1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{2 x^2-1}{\left(x^2+4\right)\left(x^2-3\right)} d x=$$

A
$\frac{9}{14} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{14 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
B
$\frac{9}{7} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{7 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+c$, (where c is constant of integration)
C
$\frac{9}{7} \tan ^{-1}\left(\frac{x}{2}\right)-\frac{5}{7 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
D
$\frac{9}{14} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{7} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{1}{2}\right], \quad \mathrm{f}(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $\mathrm{f}\left(\frac{\pi}{4}\right)$ is

A
$-\frac{1}{2}$
B
$\frac{1}{2}$
C
1
D
$-1$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of possible distinct straight lines passing through $(2,3)$ and forming a triangle with co-ordinate axes whose area is 12 sq . units are,

A
one
B
two
C
three
D
four
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation $\left[\frac{1+\left(\frac{d y}{d x}\right)^2}{\left(\frac{d^2 y}{d x^2}\right)}\right]^{\frac{3}{2}}=\mathrm{kx}$ is of

A
order $=2$, degree $=3$
B
order $=3$, degree $=2$
C
order $=2$, degree $=2$
D
order $=3$, degree $=3$
MHT CET Papers
EXAM MAP