1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable x has the following probability distribution. Then value of $k$ is _________ and $\mathrm{P}(3< x \leq 6)$ has the value

$\mathrm{X}=x$ 0 1 2 3 4 5 6 7 8
$\mathrm{P}(x)$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{3k}$ $\mathrm{4k}$ $\mathrm{4k}$ $\mathrm{3k}$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{k}$

A
$\frac{1}{20}, \frac{3}{7}$
B
$\frac{5}{21}, \frac{3}{7}$
C
$\frac{1}{21}, \frac{3}{7}$
D
$\frac{1}{20}, \frac{4}{7}$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\log \left[\mathrm{e}^{5 x}\left(\frac{3 x-4}{x+5}\right)^{\frac{4}{3}}\right]$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$5+\frac{4}{3 x-4}-\frac{4}{3(x+5)}$
B
$5+\frac{4}{3(3 x-4)}-\frac{4}{3(x+5)}$
C
$5 x+\frac{4}{3 x-4}-\frac{4}{3(x+5)}$
D
$5+\frac{12}{3 x-4}-\frac{4}{(x+5)}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0
 

Let $f$ be a twice differentiable function such that $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x), \mathrm{f}^{\prime}(x)=\mathrm{g}(x)$ and $\mathrm{h}(x)=[\mathrm{f}(x)]^2+[\mathrm{g}(x)]^2$. If $\mathrm{h}(5)=1$, then $\mathrm{h}(10)$ is __________.

A
2
B
4
C
$-$1
D
1
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) of the parallelogram whose diagonals are along the vectors $8 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}$ and $3 \hat{i}+4 \hat{j}-12 \hat{k}$, is

A
52
B
26
C
65
D
20
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12