1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\theta$ and $\alpha$ are not odd multiples of $\frac{\pi}{2}$ then $\tan \theta=\tan \alpha$ implies principal solution is

A
$\theta=\alpha+\frac{\mathrm{n} \pi}{2}, \mathrm{n} \in \mathbb{Z}$
B
$\quad \theta=\alpha+\frac{3 \mathrm{n} \pi}{2}, \mathrm{n} \in \mathbb{Z}$
C
$\theta=\mathrm{n} \pi+\alpha, \mathrm{n} \in \mathbb{Z}$
D
$\quad \theta=\frac{\mathrm{n} \pi}{4}+\alpha, \mathrm{n} \in \mathbb{Z}$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $\cos \left(30^{\circ}, 30^{\prime}\right)$ is given that $1^{\circ}=0.0175^{\circ}$ and $\cos 30^{\circ}=0.8660$

A
0.8778
B
0.7666
C
0.7916
D
0.8616
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Let X denote the random variable of number of jacks obtained in the two drawn cards. Then $P(X=1)+P(X=2)$ equals

A
$\frac{24}{169}$
B
$\frac{52}{169}$
C
$\frac{25}{169}$
D
$\frac{49}{169}$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{(x-1) \mathrm{e}^x}{(x+1)^3} \mathrm{~d} x$ is equal to

A
$\frac{\mathrm{e}^x}{(x+1)}+\mathrm{c}$, (where c is constant of integration)
B
$\frac{\mathrm{e}^{\mathrm{x}}}{(x+1)^2}+\mathrm{c}$, (where c is constant of integration)
C
$\frac{-\mathrm{e}^x}{(x+1)}+\mathrm{c}$, (where c is constant of integration)
D
$\frac{-\mathrm{e}^x}{(x+1)^2}+\mathrm{c}$, (where c is constant of integration)
MHT CET Papers
EXAM MAP