1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A triangular park is enclosed on two sides by a fence and on the third side a straight river bank. The two sides having fence are of same length $x$. The maximum area (in sq. units) enclosed by the park is

A
$\frac{3}{2} x^2$
B
$\sqrt{\frac{x^3}{8}}$
C
$\frac{1}{2} x^2$
D
$\pi x^2$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If p and q are statements, then _________ is a contingency.

A
$\mathrm{p} \wedge \sim \mathrm{p}$
B
$\mathrm{p} \vee \sim \mathrm{p}$
C
$\mathrm{p} \vee \mathrm{q}$
D
$(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q})) \rightarrow \mathrm{q}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int_\limits0^{\frac{\pi}{3}} \frac{\tan \theta}{\sqrt{2 k \sec \theta}} d \theta=1-\frac{1}{\sqrt{2}},(k>0)$, then the value of $k$ is

A
2
B
1
C
$\frac{1}{2}$
D
4
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable x has the following probability distribution. Then value of $k$ is _________ and $\mathrm{P}(3< x \leq 6)$ has the value

$\mathrm{X}=x$ 0 1 2 3 4 5 6 7 8
$\mathrm{P}(x)$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{3k}$ $\mathrm{4k}$ $\mathrm{4k}$ $\mathrm{3k}$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{k}$

A
$\frac{1}{20}, \frac{3}{7}$
B
$\frac{5}{21}, \frac{3}{7}$
C
$\frac{1}{21}, \frac{3}{7}$
D
$\frac{1}{20}, \frac{4}{7}$
MHT CET Papers
EXAM MAP