1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the concentric circle, with the circle $\mathrm{C}_1$ having equation $x^2+y^2-6 x-4 y-12=0$ and having double area compared to the area of $\mathrm{C}_1$, is

A
$x^2+y^2-6 x-4 y=27$
B
$x^2+y^2-6 x-4 y=13$
C
$x^2+y^2-6 x-4 y=50$
D
$x^2+y^2-6 x-4 y=37$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation $$(\sqrt[3]{1+a}-1) x^2+(\sqrt{1+a}-1) x+(\sqrt[6]{1+a}-1)=0$$ where $a>-1$ then $\lim _\limits{a \rightarrow 0^{+}} \alpha(a)$ and $\lim _\limits{a \rightarrow 0^{+}} \beta(a)$ respectively are

A
1 and $-\frac{5}{2}$
B
$-$1 and $-\frac{1}{2}$
C
2 and $-\frac{7}{2}$
D
3 and $-\frac{9}{2}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $2 \sin ^2 x+3 \sin x-2>0$ and $x^2-x-2<0$. ( $x$ is measured in radians). The $x$ lies in the interval

A
$\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
B
$\left(-1, \frac{5 \pi}{6}\right)$
C
$(-1,2)$
D
$\left(\frac{\pi}{6}, 2\right)$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A} \equiv(1,-1,0), \mathrm{B} \equiv(0,1,-1)$ and $\mathrm{C} \equiv(-1,0,1)$, then the unit vector $\overline{\mathrm{d}}$ such that $\overline{\mathrm{a}}$ and $\overline{\mathrm{d}}$ are perpendiculars and $\overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ are coplanar is

A
$+\frac{1}{\sqrt{3}}(1,1,1)$
B
$+\frac{1}{\sqrt{3}}(-1,-1,1)$
C
$+\frac{1}{\sqrt{6}}(1,1,-2)$
D
$+\frac{1}{\sqrt{2}}(1,1,0)$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12