1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}, \bar{c}$ be three non-coplanar vectors and $\overline{\mathrm{p}}, \overline{\mathrm{q}}, \overline{\mathrm{r}}$ defined by the relations

$$\overline{\mathrm{p}}=\frac{\overline{\mathrm{b}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}$$

then the value of the expression $(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \cdot \overline{\mathrm{p}}+(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \cdot \overline{\mathrm{q}}+(\overline{\mathrm{c}}+\overline{\mathrm{a}}) \cdot \overline{\mathrm{r}}$ is equal to

A
0
B
1
C
2
D
3
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]$, then $A^{-1}=$

A
$-\frac{1}{2}\left[\begin{array}{cc}3 & 2 \\ -4 & 2\end{array}\right]$
B
$\frac{1}{14}\left[\begin{array}{cc}3 & 2 \\ -4 & 2\end{array}\right]$
C
$\frac{1}{14}\left[\begin{array}{cc}-3 & -2 \\ 4 & -2\end{array}\right]$
D
$-\frac{1}{14}\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of family of circles, whose centres are on the X -axis and also touch the Y -axis is

A
$4\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
B
$\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
C
$2\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
D
$\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=4\left(x^2+y^2\right)^2$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A ball ' $A$ ' is projected vertically upwards with certain initial speed. Another ball 'B' of same mass is projected at an angle of $30^{\circ}$ with vertical with the same initial speed. At the highest point, the ratio of potential energy of ball A to that of ball B will be

$$\left(\sin 90^{\circ}=1, \sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}, \sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}\right)$$

A
$4: 3$
B
$3: 4$
C
$4: 1$
D
$3: 2$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12