1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+K$, where K is a constant of integration, then the value of $5(A+B+C)$ is equal to

A
25
B
14
C
16
D
20
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{2 x^2-1}{\left(x^2+4\right)\left(x^2-3\right)} d x=$$

A
$\frac{9}{14} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{14 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
B
$\frac{9}{7} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{7 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+c$, (where c is constant of integration)
C
$\frac{9}{7} \tan ^{-1}\left(\frac{x}{2}\right)-\frac{5}{7 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
D
$\frac{9}{14} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{7} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{1}{2}\right], \quad \mathrm{f}(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $\mathrm{f}\left(\frac{\pi}{4}\right)$ is

A
$-\frac{1}{2}$
B
$\frac{1}{2}$
C
1
D
$-1$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of possible distinct straight lines passing through $(2,3)$ and forming a triangle with co-ordinate axes whose area is 12 sq . units are,

A
one
B
two
C
three
D
four
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12