1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point $(13,32)$. The line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$. Then the distance between $L$ and $K$ is

A
$\frac{23}{\sqrt{15}}$
B
$\sqrt{17}$
C
$\frac{17}{\sqrt{15}}$
D
$\frac{23}{\sqrt{17}}$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $|\bar{a}|=\sqrt{27},|\bar{b}|=7$ and $|\bar{a} \times \bar{b}|=35$, then $\bar{a} \cdot \bar{b}$ is equal to

A
$\sqrt{\frac{35}{2}}$
B
$\frac{\sqrt{35}}{2}$
C
$7 \sqrt{2}$
D
$\sqrt{35}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of real solutions of $\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^2+x+1}=\frac{\pi}{2}$ is

A
one
B
zero
C
two
D
infinite
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $S=\left\{x \in(-\pi, \pi) \mid x \neq 0, \pm \frac{\pi}{2}\right\}$. The sum of all distinct solutions of the equation $\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0$ in the set S is equal to

A
$-\frac{7 \pi}{9}$
B
$-\frac{2 \pi}{9}$
C
0
D
$\frac{5 \pi}{9}$
MHT CET Papers
EXAM MAP