1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation $$(\sqrt[3]{1+a}-1) x^2+(\sqrt{1+a}-1) x+(\sqrt[6]{1+a}-1)=0$$ where $a>-1$ then $\lim _\limits{a \rightarrow 0^{+}} \alpha(a)$ and $\lim _\limits{a \rightarrow 0^{+}} \beta(a)$ respectively are

A
1 and $-\frac{5}{2}$
B
$-$1 and $-\frac{1}{2}$
C
2 and $-\frac{7}{2}$
D
3 and $-\frac{9}{2}$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $2 \sin ^2 x+3 \sin x-2>0$ and $x^2-x-2<0$. ( $x$ is measured in radians). The $x$ lies in the interval

A
$\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
B
$\left(-1, \frac{5 \pi}{6}\right)$
C
$(-1,2)$
D
$\left(\frac{\pi}{6}, 2\right)$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A} \equiv(1,-1,0), \mathrm{B} \equiv(0,1,-1)$ and $\mathrm{C} \equiv(-1,0,1)$, then the unit vector $\overline{\mathrm{d}}$ such that $\overline{\mathrm{a}}$ and $\overline{\mathrm{d}}$ are perpendiculars and $\overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ are coplanar is

A
$+\frac{1}{\sqrt{3}}(1,1,1)$
B
$+\frac{1}{\sqrt{3}}(-1,-1,1)$
C
$+\frac{1}{\sqrt{6}}(1,1,-2)$
D
$+\frac{1}{\sqrt{2}}(1,1,0)$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A bullet is shot horizontally and its distance S cm at time t second is given by $\mathrm{S}=1200 \mathrm{t}-15 \mathrm{t}^2$, then the distance covered by the bullet when it comes to the rest, is

A
12000 cm
B
24000 cm
C
1200 cm
D
2400 cm
MHT CET Papers
EXAM MAP