A ball ' $A$ ' is projected vertically upwards with certain initial speed. Another ball 'B' of same mass is projected at an angle of $30^{\circ}$ with vertical with the same initial speed. At the highest point, the ratio of potential energy of ball A to that of ball B will be
$$\left(\sin 90^{\circ}=1, \sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}, \sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}\right)$$
A small sphere oscillates simple harmonically in a watch glass whose radius of curvature is 1.6 m . The period of oscillation of the sphere in second is (acceleration due to gravity, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ )
The path difference between two waves $\mathrm{Y}_1=\mathrm{a}_1 \sin \left(\omega \mathrm{t}-\frac{2 \pi \mathrm{x}}{\lambda}\right)$ and $\mathrm{Y}_2=\mathrm{a}_2 \cos \left(\omega \mathrm{t}-\frac{2 \pi \mathrm{x}}{\lambda}+\phi\right)$ is
Two equal point charges ' $q$ ' each exert a force ' $F$ ' on each other, when they are placed distance ' $x$ ' apart in air. When the same charges are placed distance ' $y$ ' apart in a medium of dielectric constant ' $k$ ', they exert the same force. The ratio of distance ' $y$ ' to ' $x$ ' is equal to