1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Consider the following statements

p : the switch $\mathrm{S}_1$ is closed.

q : the switch $\mathrm{S}_2$ is closed.

$r$ : the switch $\mathrm{S}_3$ is closed.

Then the switching circuit represented by the statement $(p \wedge q) \vee(\sim p \wedge(\sim q \vee p \vee r))$ is

A
MHT CET 2024 3rd May Morning Shift Mathematics - Mathematical Reasoning Question 39 English Option 1
B
MHT CET 2024 3rd May Morning Shift Mathematics - Mathematical Reasoning Question 39 English Option 2
C
MHT CET 2024 3rd May Morning Shift Mathematics - Mathematical Reasoning Question 39 English Option 3
D
MHT CET 2024 3rd May Morning Shift Mathematics - Mathematical Reasoning Question 39 English Option 4
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}, \bar{c}$ be three non-coplanar vectors and $\overline{\mathrm{p}}, \overline{\mathrm{q}}, \overline{\mathrm{r}}$ defined by the relations

$$\overline{\mathrm{p}}=\frac{\overline{\mathrm{b}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}$$

then the value of the expression $(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \cdot \overline{\mathrm{p}}+(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \cdot \overline{\mathrm{q}}+(\overline{\mathrm{c}}+\overline{\mathrm{a}}) \cdot \overline{\mathrm{r}}$ is equal to

A
0
B
1
C
2
D
3
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]$, then $A^{-1}=$

A
$-\frac{1}{2}\left[\begin{array}{cc}3 & 2 \\ -4 & 2\end{array}\right]$
B
$\frac{1}{14}\left[\begin{array}{cc}3 & 2 \\ -4 & 2\end{array}\right]$
C
$\frac{1}{14}\left[\begin{array}{cc}-3 & -2 \\ 4 & -2\end{array}\right]$
D
$-\frac{1}{14}\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of family of circles, whose centres are on the X -axis and also touch the Y -axis is

A
$4\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
B
$\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
C
$2\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=\left(x^2+y^2\right)^2$
D
$\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2 x^2=4\left(x^2+y^2\right)^2$
MHT CET Papers
EXAM MAP