1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{\log \sqrt{x}}{3 x} \mathrm{dx}$ is equal to

A
$\frac{1}{3}(\log \sqrt{x})+\mathrm{c}$, (where $c$ is a constant of integration)
B
$\frac{2}{3}(\log \sqrt{x})^2+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{2}{3}(\log x)^2+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{12}(\log x)^2+\mathrm{c},($ where c is a constant of integration)
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The negation of contrapositive of the statement $\mathrm{p} \rightarrow(\sim \mathrm{q} \wedge \mathrm{r})$ is

A
$(\sim q \vee \sim r) \wedge \sim p$
B
$(q \vee \sim r) \wedge p$
C
$(q \wedge \sim r) \vee p$
D
$(\sim q \wedge \sim r) \vee \sim p$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{F}(x)=\left(\mathrm{f}\left(\frac{x}{2}\right)\right)^2+\left(\mathrm{g}\left(\frac{x}{2}\right)\right)^2$, where $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x)$ and $\mathrm{g}(x)=\mathrm{f}^{\prime}(x)$ and given by $\mathrm{F}(5)=5$, then $F(10)$ is equal to

A
5
B
10
C
15
D
0
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $P$ be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through $P$ and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is

A
$-4 y-x+7 z=0$
B
$x-4 y-7 z=0$
C
$x-4 y+7 z=0$
D
$x+4 y+7 z=0$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12