1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Calculate the molar mass of non volatile solute when 5 g of it is dissolved in 50 g solvent, boils at $119.6^{\circ} \mathrm{C}$. $\left[\mathrm{K}_{\mathrm{b}}=3.2 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right.$, boiling point of pure solvent $=118^{\circ} \mathrm{C}$ ].

A
$180 \mathrm{~g} \mathrm{~mol}^{-1}$
B
$210 \mathrm{~g} \mathrm{~mol}^{-1}$
C
$200 \mathrm{~g} \mathrm{~mol}^{-1}$
D
$190 \mathrm{~g} \mathrm{~mol}^{-1}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two tangents drawn from $\mathrm{P}(1,7)$ to the circle $x^2+y^2=25$, touch the circle at Q and R respectively. The area of the quadrilateral PQOR is

A
16 sq. units
B
36 sq. units
C
25 sq. units
D
49 sq. units
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $X=\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b} \\ \mathrm{c}\end{array}\right], \mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$. If $A X=B$, then the value of $2 a-3 b+4 c$ will be

A
0
B
$-$4
C
6
D
4
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let in a Binomial distribution, consisting of 5 independent trials, probabilities of exactly 1 and 2 successes be 0.4096 and 0.2048 respectively. Then the probability of getting exactly 3 successes is equal to

A
$\frac{80}{243}$
B
$\frac{40}{7243}$
C
$\frac{32}{625}$
D
$\frac{128}{625}$
MHT CET Papers
EXAM MAP