1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\int_\limits{\sqrt{\log _{\mathrm{e}}}}^{\sqrt{\log _{\mathrm{e}} 3}} \frac{x \sin x^2}{\sin x^2+\sin \left(\log _{\mathrm{e}} 6-x^2\right)} d x$ is

A
$\frac{1}{4} \log _{\mathrm{e}} \frac{3}{2}$
B
$\frac{1}{2} \log _e \frac{3}{2}$
C
$ \log _e \frac{3}{2}$
D
$\frac{1}{6} \log _{\mathrm{e}} \frac{3}{2}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

A
$-\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, (where c is a constant of integration)
B
$\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c},($ where c is a constant of integration)
C
$\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+\mathrm{c}$, (where c is a constant of integration)
D
$-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+\mathrm{c}$, (where c is a constant of integration)
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three persons apply for the same house is

A
$\frac{1}{9}$
B
$\frac{2}{9}$
C
$\frac{7}{9}$
D
$\frac{8}{9}$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of C for which Mean value Theorem holds for the function $\mathrm{f}(x)=\log _e x$ on the interval $[1,3]$ is

A
$\log _3 \mathrm{e}$
B
$\log _{\mathrm{e}} 3$
C
$\frac{1}{2} \log _{\mathrm{c}} 3$
D
$ 2 \log _3 \mathrm{e}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12