1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of C for which Mean value Theorem holds for the function $\mathrm{f}(x)=\log _e x$ on the interval $[1,3]$ is

A
$\log _3 \mathrm{e}$
B
$\log _{\mathrm{e}} 3$
C
$\frac{1}{2} \log _{\mathrm{c}} 3$
D
$ 2 \log _3 \mathrm{e}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The shaded region in the following figure is the solution set of the inequations

MHT CET 2024 2nd May Evening Shift Mathematics - Linear Programming Question 20 English

A
$x+2 y \geq 50,2 x+y \leq 100,2 x-y \leq 0$, $x, y \geq 0$
B
$x+2 y \leq 50,2 x+y \leq 100,2 x-y \leq 0$, $x, y \geq 0$
C
$x+2 y \geq 50,2 x+y \geq 100,2 x-y \leq 0$, $x, y \geq 0$
D
$x+2 y \leq 50,2 x+y \geq 100,2 x-y \leq 0$, $x, y \geq 0$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The diagonals of a parallelogram $A B C D$ are along the lines $x+3 y=4$ and $6 x-2 y=7$. Then ABCD must be a

A
rectangle
B
square
C
rhombus
D
cyclic quadrilateral
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x=\sec \theta-\cos \theta, y=\sec ^{10} \theta-\cos ^{10} \theta$ and $\left(x^2+4\right)\left(\frac{d y}{d x}\right)^2=k\left(y^2+4\right)$, then the value of $k$ is

A
$\frac{1}{100}$
B
1
C
10
D
100
MHT CET Papers
EXAM MAP