The negation of contrapositive of the statement $\mathrm{p} \rightarrow(\sim \mathrm{q} \wedge \mathrm{r})$ is
If $\mathrm{F}(x)=\left(\mathrm{f}\left(\frac{x}{2}\right)\right)^2+\left(\mathrm{g}\left(\frac{x}{2}\right)\right)^2$, where $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x)$ and $\mathrm{g}(x)=\mathrm{f}^{\prime}(x)$ and given by $\mathrm{F}(5)=5$, then $F(10)$ is equal to
Let $P$ be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through $P$ and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is
Let $f(\theta)=\sin \left(\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos 2 \theta}}\right)\right)$, where $\frac{-\pi}{4}<\theta<\frac{\pi}{4}$, then the value of $\frac{d}{d(\tan \theta)}(f(\theta))$ is