1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\sin ^{-1}\left(\frac{2 \cdot 3^x}{1+9^x}\right)$, then $\mathrm{f}^{\prime}\left(\frac{1}{2}\right)$ equals

A
$\sqrt{3} \log (\sqrt{3})$
B
$-\sqrt{3} \log 3$
C
$-\sqrt{3} \log (\sqrt{3})$
D
$\sqrt{3} \log 3$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int\left(\mathrm{f}(x) \mathrm{g}^{\prime \prime}(x)-\mathrm{f}^{\prime \prime}(x) \mathrm{g}(x)\right) \mathrm{d} x$ is equal to

A
$\mathrm{f}(x) \mathrm{g}(x)-\mathrm{f}^{\prime}(x) \mathrm{g}^{\prime}(x)$
B
$\mathrm{f}^{\prime}(x) \mathrm{g}(x)-\mathrm{f}(x) \mathrm{g}^{\prime}(x)$
C
$\mathrm{f}(x) \mathrm{g}^{\prime}(x)-\mathrm{f}^{\prime}(x) \mathrm{g}(x)$
D
$\mathrm{f}(x) \mathrm{g}^{\prime}(x)+\mathrm{f}^{\prime}(x) \mathrm{g}(x)$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\tan \left(2 \tan ^{-1}\left(\frac{\sqrt{5}-1}{2}\right)\right)$ is

A
$2 \sqrt{5}$
B
4
C
2
D
$\sqrt{5}-1$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Number of different nine digit numbers, that can be formed from the digits in the number 223355888 by rearranging its digits, so that the odd digits occupy even positions, is

A
16
B
40
C
60
D
180
MHT CET Papers
EXAM MAP