1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of k , for which the function

$$\mathrm{f}(x)= \begin{cases}\left(\frac{4}{5}\right)^{\frac{\ln 4 x}{\tan 5 x}}, & 0< x< \frac{\pi}{2} \\ \mathrm{k}+\frac{2}{5} & , x=\frac{\pi}{2}\end{cases}$$

is continuous at $x=\frac{\pi}{2}$, is

A
$\frac{17}{20}$
B
$\frac{3}{5}$
C
$-\frac{2}{5}$
D
$\frac{2}{5}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The co-ordinates of a point on the curve $y=x \log x$ at which the normal is parallel to the line $2 x-2 y=3$ are

A
$\left(-\mathrm{e}^{-2}, 2 \mathrm{e}^{-2}\right)$
B
$\left(-\mathrm{e}^{-2},-2 \mathrm{e}^{-2}\right)$
C
$\left(\mathrm{e}^{-2}, 2 \mathrm{e}^{-2}\right)$
D
$\left(\mathrm{e}^{-2},-2 \mathrm{e}^{-2}\right)$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\int_\limits{\sqrt{\log _{\mathrm{e}}}}^{\sqrt{\log _{\mathrm{e}} 3}} \frac{x \sin x^2}{\sin x^2+\sin \left(\log _{\mathrm{e}} 6-x^2\right)} d x$ is

A
$\frac{1}{4} \log _{\mathrm{e}} \frac{3}{2}$
B
$\frac{1}{2} \log _e \frac{3}{2}$
C
$ \log _e \frac{3}{2}$
D
$\frac{1}{6} \log _{\mathrm{e}} \frac{3}{2}$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

A
$-\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, (where c is a constant of integration)
B
$\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c},($ where c is a constant of integration)
C
$\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+\mathrm{c}$, (where c is a constant of integration)
D
$-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+\mathrm{c}$, (where c is a constant of integration)
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12