1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The probability distribution of a random variable X is given by

$\mathrm{X=}x_i$: 0 1 2 3 4
$\mathrm{P(X=}x_i)$ : 0.4 0.3 0.1 0.1 0.1

Then the variance of X is

A
1.76
B
2.45
C
3.2
D
4.8
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{x+1}{\sqrt{2 x-1}} \mathrm{~d} x=\mathrm{f}(x) \sqrt{2 x-1}+\mathrm{c}$, (where c is a constant of integration), then $\mathrm{f}(x)$ is equal to

A
$\frac{1}{3}(x+1)$
B
$\frac{1}{3}(x+4)$
C
$\frac{2}{3}(x+2)$
D
$\frac{2}{3}(x-4)$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\alpha+\beta+\gamma=\pi$, then the expression $\sin ^2 \alpha+\sin ^2 \beta-\sin ^2 \gamma$ has the value

A
$2 \sin \alpha \sin \beta \sin \gamma$
B
$2 \cos \alpha \sin \beta \sin \gamma$
C
$2 \sin \alpha \cos \beta \sin \gamma$
D
$2 \sin \alpha \sin \beta \cos \gamma$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{A}}=2 \hat{\mathrm{i}}+\hat{\mathrm{k}}, \overline{\mathrm{B}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{C}}=4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$. If a vector $\bar{R}$ satisfies $\bar{R} \times \bar{B}=\bar{C} \times \bar{B}$ and $\bar{R} \cdot \overline{\mathrm{~A}}=0$, then $\overline{\mathrm{R}}$ is given by

A
$\hat{\mathrm{i}}-8 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
B
$\hat{i}+8 \hat{j}+2 \hat{k}$
C
$-\hat{i}-8 \hat{j}+2 \hat{k}$
D
$-\hat{\mathrm{i}}-8 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12