If $\int \frac{x+1}{\sqrt{2 x-1}} \mathrm{~d} x=\mathrm{f}(x) \sqrt{2 x-1}+\mathrm{c}$, (where c is a constant of integration), then $\mathrm{f}(x)$ is equal to
If $\alpha+\beta+\gamma=\pi$, then the expression $\sin ^2 \alpha+\sin ^2 \beta-\sin ^2 \gamma$ has the value
Let $\overline{\mathrm{A}}=2 \hat{\mathrm{i}}+\hat{\mathrm{k}}, \overline{\mathrm{B}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{C}}=4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$. If a vector $\bar{R}$ satisfies $\bar{R} \times \bar{B}=\bar{C} \times \bar{B}$ and $\bar{R} \cdot \overline{\mathrm{~A}}=0$, then $\overline{\mathrm{R}}$ is given by
Distance between the parallel lines $\frac{x}{3}=\frac{y-1}{-2}=\frac{z}{1}$ and $\frac{x+4}{3}=\frac{y-3}{-2}=\frac{z+2}{1}$ is