If $y=y(x)$ is the solution of the differential equation $\left(\frac{5+\mathrm{e}^x}{2+y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+\mathrm{e}^x=0$ satisfying $y(0)=1$, then a value of $y(\log 13)$ is
The equation of the plane, passing through the mid point of the line segment of join of the points $\mathrm{P}(1,2,5)$ and $\mathrm{Q}(3,4,3)$ and perpendicular to it, is
If C is a given non-zero scalar and $\overline{\mathrm{A}}$ and $\overline{\mathrm{B}}$ are given non-zero vectors such that $\overline{\mathrm{A}}$ is perpendicular to $\overline{\mathrm{B}}$. If vector $\overline{\mathrm{X}}$ is such that $\overline{\mathrm{A}} \cdot \overline{\mathrm{X}}=\mathrm{C}$ and $\overline{\mathrm{A}} \times \overline{\mathrm{X}}=\overline{\mathrm{B}}$ then $\overline{\mathrm{X}}$ is given by
If the equation $7 x^2-14 x y+p y^2-12 x+q y-4=0$ represents a pair of parallel lines then the value of $\sqrt{p^2+q^2-p q}$ is