1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Number of different nine digit numbers, that can be formed from the digits in the number 223355888 by rearranging its digits, so that the odd digits occupy even positions, is

A
16
B
40
C
60
D
180
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\bar{b}=\hat{i} \times(\bar{a} \times \hat{i})+\hat{j} \times(\bar{a} \times \hat{j})+\hat{k} \times(\bar{a} \times \hat{k})$ then $|\bar{b}|$ is

A
$\sqrt{12}$
B
$2 \sqrt{12}$
C
$3 \sqrt{14}$
D
$2 \sqrt{14}$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of normal to the curve $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\frac{\pi}{2}$ is

A
$2 x+2 y-\pi=0$
B
$2 x-y-\pi=0$
C
$2 x-2 y-\pi=0$
D
$2 x+y-\pi=0$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line, through $\mathrm{A}(1,2,3)$ and perpendicular to the vector $2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\hat{i}+3 \hat{j}+2 \hat{k}$, is

A
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
B
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$
C
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$
D
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12