1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of $2 \sqrt{3} \cos ^2 \theta=\sin \theta$ is

A
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
B
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
C
$\mathrm{n} \pi \pm(-1)^{\mathrm{n}} \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{2 \pi}{3}, \mathrm{n} \in \mathbb{Z}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $(2+\sin x) \frac{\mathrm{d} y}{\mathrm{~d} x}+(y+1) \cos x=0$ and $y(0)=1$ then $y\left(\frac{\pi}{2}\right)$ is equal to

A
$-\frac{2}{3}$
B
$-\frac{1}{3}$
C
$\frac{4}{3}$
D
  $\frac{1}{3}$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area of the triangle, whose vertices are $A \equiv(1,-1,2), B \equiv(2,1,-1)$ and $C \equiv(3,-1,2)$, is

A
$2 \sqrt{3}$ sq.units
B
$4 \sqrt{13}$ sq.units
C
$\sqrt{13}$ sq.units
D
$4 \sqrt{3}$ sq.units
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the function

$$f(x)=3 x^3-18 x^2+27 x-40$$

on the set $\mathrm{S}=\left\{x \in \mathbb{R} / x^2+30 \leq 11 x\right\}$ is

A
$-$122
B
$-$222
C
222
D
122
MHT CET Papers
EXAM MAP