1
GATE EE 2010
+2
-0.6
For the differential equation $${{{d^2}x} \over {d{t^2}}} + 6{{dx} \over {dt}} + 8x = 0$$ with initial conditions $$x(0)=1$$ and $${\left( {{{dx} \over {dt}}} \right)_{t = 0}}$$ $$=0$$ the solution
A
$$x\left( t \right) = 2{e^{ - 6t}} - {e^{ - 2t}}$$
B
$$x\left( t \right) = 2{e^{ - 2t}} - {e^{ - 4t}}$$
C
$$x\left( t \right) = - {e^{ - 6t}} - 2{e^{ - 4t}}$$
D
$$x\left( t \right) = - {e^{ - 2t}} - 2{e^{ - 4t}}$$
2
GATE EE 2010
+1
-0.3
Given $$f\left( t \right) = {L^{ - 1}}\left[ {{{3s + 1} \over {{s^3} + 4{s^2} + \left( {k - 3} \right)}}} \right].$$
$$\mathop {Lt}\limits_{t \to \propto } \,\,f\left( t \right) = 1$$ then value of $$k$$ is
A
$$1$$
B
$$2$$
C
$$3$$
D
$$4$$
3
GATE EE 2010
+1
-0.3
Figure shows a composite switch consisting of a power transistor $$(BJT)$$ in series with a diode. Assuming that the transistor switch and the diode are ideal, the $$I$$-$$V$$ characteristic of the composite switch is
A
B
C
D
4
GATE EE 2010
+1
-0.3
The fully controlled thyristor converter in the figure is fed from a single-phase source. When the firing angle is $${0^ \circ }$$, the $$dc$$ output voltage of the converter is $$300V.$$ What will be the output voltage for a firing angle of $${60^ \circ }$$, assuming continuous conduction?
A
$$150V$$
B
$$210V$$
C
$$300V$$
D
$$100\pi V$$
GATE EE Papers
2023
2022
2021
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
EXAM MAP
Medical
NEET