1
GATE EE 2010
+2
-0.6
Given the finite length input x[n] and the corresponding finite length output y[n] of an LTI system as shown below, the impulse response h[n] of the system is
A
$$\begin{array}{l}h\left[n\right]=\left\{1,\;0,\;0,\;1\right\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$
B
$$\begin{array}{l}h\left[n\right]=\left\{1,\;0,\;1\right\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$
C
$$\begin{array}{l}h\left[n\right]=\left\{1,\;1,\;1,\;1\right\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$
D
$$\begin{array}{l}h\left[n\right]=\left\{1,\;1,\;1\right\}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\uparrow\end{array}$$
2
GATE EE 2010
+1
-0.3
The system represented by the input-output relationship $$y\left(t\right)=\int_{-\infty}^{5t}x\left(\tau\right)d\tau$$, t > 0 is
A
Linear and causal
B
Linear but not causal
C
Causal but not linear
D
Neither linear nor causal
3
GATE EE 2010
+1
-0.3
The period of the signal $$x\left(t\right)=8\sin\left(0.8\mathrm{πt}+\frac{\mathrm\pi}4\right)$$ is
A
$$0.4\;\mathrm\pi\;\mathrm s$$
B
$$0.8\;\mathrm\pi\;\mathrm s$$
C
1.25 s
D
2.5 s
4
GATE EE 2010
+1
-0.3
The second harmonic component of the periodic waveform given in the figure has an amplitude of
A
0
B
1
C
$$2/\mathrm\pi$$
D
$$\sqrt5$$
GATE EE Papers
2023
2022
2021
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
EXAM MAP
Medical
NEET