1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The slope of the tangent drawn from the point $(1,1)$ to the hyperbola $2 x^2-y^2=4$ is
A
2
B
$\frac{-2 \pm \sqrt{6}}{2}$
C
$-1 \pm \sqrt{6}$
D
$\frac{-2 \pm \sqrt{3}}{2}$
2
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$(p, q)$ is the point of intersection of a latus rectum and an asymptote of the hyperbola $9 x^2-16 y^2=144$. If $p>0$ and $q>0$, then $q=$
A
$\frac{9}{4}$
B
$\frac{7}{4}$
C
$\frac{15}{4}$
D
$\frac{13}{4}$
3
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The point of intersection of two tangents drawn to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{4}=1$ lie on the circle $x^2+y^2=5$. If these tangents are perpendicular to each other, then $a=$
A
25
B
5
C
9
D
3
4
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$ are two points on the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ where, $\phi+\theta=\frac{\pi}{2}$. If $(h, k)$ is the point of intersection of the normals drawn at $P$ and $Q$, then $k=$

A
$\frac{a^2-b^2}{b}$
B
$\frac{a^2+b^2}{b}$
C
$-\left(\frac{a^2-b^2}{b}\right)$
D
$-\left(\frac{a^2+b^2}{b}\right)$
TS EAMCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12