1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the equation of the curve which passes through the point $(1,1)$ satisfies the differential equation $\frac{d y}{d x}=\frac{2 x-5 y+3}{5 x+2 y-3}$, then the equation of that curve is
A
$x^{2}+5 x y-y^{2}+3 x-3 y-5=0$
B
$x^{2}+5 x y-y^{2}+3 x+3 y-11=0$
C
$x^{2}-5 x y-y^{2}-3 x-3 y+11=0$
D
$x^{2}-5 x y-y^{2}+3 x+3 y-1=0$
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The general solution of the differential equation $\left(6 x^{2}-2 x y-18 x+3 y\right) d x-\left(x^{2}-3 x\right) d y=0$ is
A
$2 x^{3}-x^{2} y-9 x^{2}+3 x y+C=0$
B
$4 x^{3}-2 x^{2} y-6 x^{2}+6 x y+C=0$
C
$2 x^{2}-4 x y-y^{2}-x+3 y+C=0$
D
$3 x^{2}+5 x y-2 y^{2}-4 x-2 y+C=0$
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The order and degree of the differential equation

$ \frac{d y}{d x}=\left(\frac{d^{2} y}{d x^{2}}+2\right)^{\frac{1}{2}}+\frac{d^{2} y}{d x}+5 \text { are respectively } $

A
2,1
B
2, 4
C
2,2
D
2,3
4
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $y=\sin x+A \cos x$ is general solution of $\frac{d x}{d y}+f(x) y=\sec x$, then an integrating factor of the differential equation is
A
$\sec x$
B
$\tan x$
C
$\cos x$
D
$\sin x$
TS EAMCET Subjects
EXAM MAP