1
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\hat{\mathbf{i}}+\hat{\mathbf{j}}, \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{k}}+\hat{\mathbf{i}}, \hat{\mathbf{i}}-\hat{\mathbf{j}}, \hat{\mathbf{j}}-\hat{\mathbf{k}}$ are the position vectors of the points $A, B, C, D, E$ respectively, then the point of intersection of the line $A B$ and the plane passing through $C, D, E$ is.
A
$\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
B
$\frac{1}{2} \hat{\mathbf{i}}+\hat{\mathrm{j}}+\frac{1}{2} \hat{\mathbf{k}}$
C
$\left.\frac{1}{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\right)$
D
$\frac{1}{2} \hat{i}-\hat{j}+\frac{1}{2} \hat{k}$
2
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
A plane $(\pi)$ passing through the point $(1,2,-3)$ is perpendicular to the planes $x+y-z+4=0$ and $2 x-y+z+1=0$. If the equation of the plane $(\pi)$ is $a x+b y+c z+1=0$, then $a^2+b^2+c^2=$
A
4
B
3
C
2
D
1
3
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the ratio of the perpendicular distances of a variable point $P(x, y, z)$ from the $X$-axis and from the $Y Z$ - plane is $2: 3$, then the equation of the locus of $P$ is
A
$4 x^2-9 y^2-9 z^2=0$
B
$9 x^2-4 y^2-4 z^2=0$
C
$4 x^2-4 y^2-9 z^2=0$
D
$9 x^2-9 y^2-4 z^2=0$
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The direction cosines of two lines are connected by the relations $l-m+n=0$ and $2 l m-3 m n+n l=0$. If $\theta$ is the angle between these two lines, then $\cos \theta=$
A
$\frac{1}{4}$
B
$\frac{1}{\sqrt{19}}$
C
$\frac{1}{3}$
D
$\frac{1}{3 \sqrt{2}}$
TS EAMCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12