Quadratic Equations · Mathematics · TS EAMCET

Start Practice

MCQ (Single Correct Answer)

1
If $f(x)$ is a quadratic function such that $f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$, then $\sqrt{f\left(\frac{2}{3}\right)+f\left(\frac{3}{2}\right)}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
2
If $\alpha$ is a root of the equation $x^{2}-x+1=0$, then $\left(\alpha+\frac{1}{\alpha}\right)^{3}+\left(\alpha^{2}+\frac{1}{\alpha^{2}}\right)^{3}+\left(\alpha^{3}+\frac{1}{\alpha^{3}}\right)^{3}+\left(\alpha^{4}+\frac{1}{\alpha^{4}}\right)^{3}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
3
$\alpha, \beta$ are the real roots of the equation $x^{2}+a x+b=0$. If $\alpha+\beta=\frac{1}{2}$ and $\alpha^{3}+\beta^{3}=\frac{37}{8}$, then $a-\frac{1}{b}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
4
If $\alpha, \beta, \gamma$ are the roots of the equation $4 x^{3}-3 x^{2}+2 x-1=0$, then $\alpha^{3}+\beta^{3}+\gamma^{3}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
5
The equation $16 x^{4}+16 x^{3}-4 x-1=0$ has a multiple root. If $\alpha, \beta, \gamma, \delta$ are the roots of this equation, then $\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}+\frac{1}{\delta^{4}}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
6
The solution set of the equation $3^{x}+3^{1-x}-4 < 0$ contained in $R$ is
TG EAPCET 2024 (Online) 10th May Evening Shift
7
The common solution set of the inequations $x^{2}-4 x \leq 12$ and $x^{2}-2 x \geq 15$ taken together is
TG EAPCET 2024 (Online) 10th May Evening Shift
8

With respect to the roots of the equation $3 x^{3}+b x^{2}+b x+3=0$, match the items of List I with those fo List II

List I List II
A All the roots are negative. I. $(b-3)^2=36+P^2$ for $P \in R$
B Two roots are complex. II. $-3<b<9$
C Two roots are positive. III. $b \in(-\infty,-3) \cup(9, \infty)$
D All roots are real and IV. $b=9$
V. $b=-3$
TG EAPCET 2024 (Online) 10th May Evening Shift
9
If $\alpha, \beta$ are the roots of the equation $x+\frac{4}{x}=2 \sqrt{3}$, then $\frac{2}{\sqrt{3}}\left|\alpha^{2024}-\beta^{2024}\right|=$
TG EAPCET 2024 (Online) 10th May Morning Shift
10
$\alpha, \beta$ are the real roots of the equation $12 x^{\frac{1}{3}}-25 x^{\frac{1}{6}}+12=0$. If $\alpha>\beta$, then $6 \sqrt{\frac{\alpha}{\beta}}=$
TG EAPCET 2024 (Online) 10th May Morning Shift
11
$\alpha, \beta$ and $\gamma$ are the roots of the equation $x^3+3 x^2-10 x-24=0$. If $\alpha>\beta>\gamma$ and $\alpha^3+3 \beta^2-10 \gamma-24=11 k$, then $k=$
TG EAPCET 2024 (Online) 10th May Morning Shift
12
$\alpha, \beta$ and $\gamma$ are the roots of the equation $8 x^3-42 x^2+63 x-27=0$. If $\beta<\gamma<\alpha$ and $\beta, \gamma$ and $\alpha$ are in geometric progression, then the extreme value of the expression $\gamma x^2+4 \beta x+\alpha$ is
TG EAPCET 2024 (Online) 10th May Morning Shift
13
If $\frac{2 x^3+1}{2 x^2-x-6}=a x+b+\frac{A}{P x-2}+\frac{B}{2 x+q}$, then 51 apB $=$
TG EAPCET 2024 (Online) 10th May Morning Shift
14
$\alpha$ is a root of the equation $\frac{x-1}{\sqrt{2 x^2-5 x+2}}=\frac{41}{60}$. If $-\frac{1}{2}<\alpha<0$, then $\alpha$ is equal to
TG EAPCET 2024 (Online) 9th May Evening Shift
15

$\alpha, \beta, \gamma, 2$ and $\varepsilon$ are the roots of the equation

$$ \begin{aligned} & \alpha, \beta, \gamma+4 x^4-13 x^3-52 x^2+36 x+144=0 . \text { If } \\ & \alpha<\beta<\gamma<2<\varepsilon \text {, then } \alpha+2 \beta+3 \gamma+5 \varepsilon= \end{aligned} $$

TG EAPCET 2024 (Online) 9th May Evening Shift
16

If the quadratic equation $3 x^2+(2 k+1) x-5 k=0$ has real and equal roots, then the value of $k$ such that

$\frac{1}{2}$ < $k$ < 0 is

TG EAPCET 2024 (Online) 9th May Morning Shift
17
The equations $2 x^2+a x-2=0$ and $x^2+x+2 a=0$ have exactly one common root. If $a \neq 0$, then one of the roots of the equation $a x^2-4 x-2 a=0$ is
TG EAPCET 2024 (Online) 9th May Morning Shift
18
If $\alpha, \beta$ and $\gamma$ are the roots of the equation $2 x^3-3 x^2+5 x-7=0$, then $\sum \alpha^2 \beta^2=$
TG EAPCET 2024 (Online) 9th May Morning Shift
19
The sum of two roots of the equation $x^4-x^3-16 x^2+4 x+48=0$ is zero. If $\alpha, \beta, \gamma$ and $\delta$ are the roots of this equation, then $\alpha^4+\beta^4+\gamma^4+\delta^4=$
TG EAPCET 2024 (Online) 9th May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12