Matrices and Determinants · Mathematics · TS EAMCET

Start Practice

MCQ (Single Correct Answer)

1
$A=\left[\begin{array}{ll}1 & 2 \\\\ 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}x & y \\\\ 1 & 2\end{array}\right]$ are two matrices such that $(A+B)(A-B)=A^{2}-B^{2}$ If $C=\left[\begin{array}{ll}x & 2 \\\\ 1 & y\end{array}\right]$, then trace $(C)=$
TG EAPCET 2024 (Online) 11th May Morning Shift
2
If $x=k$ satisfies the equation $\left|\begin{array}{ccc}x-2 & 3 x-3 & 5 x-5 \\\\ x-4 & 3 x-9 & 5 x-25 \\\\ x-8 & 3 x-27 & 5 x-125\end{array}\right|=0$, then $x=k$ also satisfies the equation
TG EAPCET 2024 (Online) 11th May Morning Shift
3
If $A$ is a non-singular matrix, then $\operatorname{adj}\left(A^{-1}\right)=$
TG EAPCET 2024 (Online) 11th May Morning Shift
4
If the homogeneous system of linear equations $x-2 y+3 z=0,2 x+4 y-5 z=0,3 x+\lambda y+\mu z=0$ has non-trivial solution, then $8 \mu+11 \lambda=$
TG EAPCET 2024 (Online) 11th May Morning Shift
5
If $\frac{x^{2}}{2 x^{4}+7 x^{2}+6}=\frac{A x+B}{x^{2}+a}+\frac{C x+D}{a x^{2}+3}$, then $A+B+C-2 D=$
TG EAPCET 2024 (Online) 11th May Morning Shift
6

$A=\left[a_{i j}\right]$ is a $3 \times 3$ matrix with positive integers as its elements. Elements of $A$ are such that the sum of all elements of each row is equal to 6 and $a_{22}=2$.

If $\mathrm{a}_{i j}=\left\{\begin{array}{cl}\mathrm{a}_{i j}+\mathrm{a}_{j i}, & j=i+1 \text { when } i < 3 \\ \mathrm{a}_{i j}+\mathrm{a}_{j i}, & j=4-i \text { when } i=3\end{array}\right.$ for $i=1,2,3$, then $|\mathrm{A}|=$

TG EAPCET 2024 (Online) 10th May Evening Shift
7
If $|\operatorname{adj} A|=x$ and $|\operatorname{adj} B|=y$, then $\left|(\operatorname{adj}(A B))^{-1}\right|=$
TG EAPCET 2024 (Online) 10th May Evening Shift
8
The system of equations $x+3 b y+b z=0, x+2 a y+a z=0$ and $x+4 c y+c z=0$ has
TG EAPCET 2024 (Online) 10th May Evening Shift
9
$\left|\begin{array}{ccc}\frac{-b c}{a^{2}} & \frac{c}{a} & \frac{b}{a} \\ \frac{c}{b} & -\frac{a c}{b^{2}} & \frac{a}{b} \\ \frac{b}{c} & \frac{a}{c} & -\frac{a b}{c^{2}}\end{array}\right|=$
TG EAPCET 2024 (Online) 10th May Evening Shift
10

If $A=\left[\begin{array}{lll}x & y & y \\ y & x & y \\ y & y & x\end{array}\right]$ is a matrix such that $5 A^{-1}=\left[\begin{array}{ccc}-3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3\end{array}\right]$, then $A^2-4 A=$

TG EAPCET 2024 (Online) 10th May Morning Shift
11

If $A=\left[\begin{array}{lll}9 & 3 & 0 \\ 1 & 5 & 8 \\ 7 & 6 & 2\end{array}\right]$ and $A A^T-A^2=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then $\sum\limits_{\substack{1 \leq i \leq 3 \\ 1 \leq j \leq 3}} a_{i j}=$

TG EAPCET 2024 (Online) 10th May Morning Shift
12

If $a \neq b \neq c, \Delta_1=\left[\begin{array}{lll}1 & a^2 & b c \\ 1 & b^2 & c a \\ 1 & c^2 & a b\end{array}\right]$, $\Delta_2=\left[\begin{array}{ccc}1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3\end{array}\right]$ and $\frac{\Delta_1}{\Delta_2}=\frac{6}{11}$, then $11(a+b+c)=$

TG EAPCET 2024 (Online) 10th May Morning Shift
13

The system of equations $x+3 y+7=0$, $3 x+10 y-3 z+18=0$ and $3 y-9 z+2=0$ has

TG EAPCET 2024 (Online) 10th May Morning Shift
14
If $\alpha, \beta$ and $\gamma$ are the roots of the equation $\left|\begin{array}{lll}x & 2 & 2 \\ 2 & x & 2 \\ 2 & 2 & x\end{array}\right|=0$ and $\min (\alpha, \beta, \gamma)=\alpha$, then $2 \alpha+3 \beta+4 \gamma$ is equal to
TG EAPCET 2024 (Online) 9th May Evening Shift
15

If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 2 \\ 3 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$ and $\mathrm{A}^{-1}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then $\sum_{\substack{1 \leq i \leq 3 \\ 1 \leq j \leq 3}} a_{i j}=$

TG EAPCET 2024 (Online) 9th May Evening Shift
16
If $A X=D$ represents the system of linear equations $3 x-4 y+7 z+6=0,5 x+2 y-4 z+9=0$ and $8 x-6 y-z+5=0$, then
TG EAPCET 2024 (Online) 9th May Evening Shift
17
If $(x, y, z)=(\alpha, \beta, \gamma)$ is the unique solution of the system of simultaneous linear equations $3 x-4 y+z+7=0$, $2 x+3 y-z=10$ and $x-2 y-3 z=3$, then $\alpha=$
TG EAPCET 2024 (Online) 9th May Evening Shift
18
If $\alpha, \beta, \gamma$ are the roots of the equation $2 x^3-5 x^2+4 x-3=0$, then $\Sigma \alpha \beta(\alpha+\beta)=$
TG EAPCET 2024 (Online) 9th May Evening Shift
19
$A, B, C$ and $D$ are square matrices such that $A+B$ is symmetric, $A-B$ is skew-symmetric and $D$ is the transpose of $C$. If $A=\left[\begin{array}{ccc}-1 & 2 & 3 \\\\ 4 & 3 & -2 \\\\ 3 & -4 & 5\end{array}\right]$ and $C=\left[\begin{array}{ccc}0 & 1 & -2 \\\\ 2 & -1 & 0 \\\\ 0 & 2 & 1\end{array}\right]$, then the matrix $B+D=$
TG EAPCET 2024 (Online) 9th May Morning Shift
20
If $A$ is square matrix and $A^2+I=2 A$, then $A^9=$
TG EAPCET 2024 (Online) 9th May Morning Shift
21
$\operatorname{det}\left[\begin{array}{ccc}\frac{a^2+b^2}{c} & c & c \\\\ a & \frac{b^2+c^2}{a} & a \\\ b & b & \frac{c^2+a^2}{b}\end{array}\right]=$
TG EAPCET 2024 (Online) 9th May Morning Shift
22

The system of simultaneous linear equations

$$ \begin{aligned} & x-2 y+3 z=4,3 x+y-2 z=7 \\ & 2 x+3 y+z=6 \text { has } \end{aligned} $$

TG EAPCET 2024 (Online) 9th May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12