1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $1 \cdot 3 \cdot 5+3 \cdot 5 \cdot 7+5 \cdot 7 \cdot 9 \ldots$ to $n$ terms $=n(n+1) f(n)$, then $f(2)=$
A
12
B
42
C
18
D
20
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Assertion (A) : $1+\frac{2 \cdot 1}{3 \cdot 2}+\frac{2 \cdot 5}{3 \cdot 6} \frac{1}{4}+\frac{2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9} \frac{1}{8}+\ldots \infty=\sqrt[3]{4}$

Reason (R) : |x| < 1,(1-x) $=1+n x+\frac{n(n+1)}{1 \cdot 2} x^2$$+\frac{n(n+1)(n+2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots$

The correct answer is :

A
(A) and (R) are correct, ( $R$ ) is the correct explanation of $(A)$
B
(A) and (R) are correct, but (R) is not correct explanalion of (A)
C
(A) is correct but (R) is not correct
D
(A) is not correct but (R) is correct
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
Among the following four statements, the statement which is not true, for all $n \in N$ is
A
$(2 n+7)<(n+3)^2$
B
$1^2+2^2+\ldots \ldots+n^2>\frac{n^3}{3}$
C
$3 \cdot 5^{2 n+1}+2^{3 n+1}$ is divisible by 23
D
$2+7+12+\ldots \ldots+(5 n-3)=\frac{n(5 n-1)}{2}$
4
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\frac{1}{3 \cdot 6}+\frac{1}{6 \cdot 9}+\frac{1}{9 \cdot 12}+\ldots \ldots .$. to 9 terms $=$
A
$\frac{10}{99}$
B
$\frac{11}{108}$
C
$\frac{1}{10}$
D
$\frac{1}{90}$
TS EAMCET Subjects
EXAM MAP