Limits, Continuity and Differentiability · Mathematics · TS EAMCET

Start Practice

MCQ (Single Correct Answer)

1
$\lim\limits_{x \rightarrow \frac{3}{2}} \frac{\left(4 x^{2}-6 x\right)\left(4 x^{2}+6 x+9\right)}{\sqrt[3]{2 x}-\sqrt[3]{3}}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
2
If the real valued function $f(x)=\int \frac{\left(4^{x}-1\right)^{4} \cot (x \log 4)}{\sin (x \log 4) \log \left(1+x^{2} \log 4\right)}, \quad$ if $x \neq 0$ is continuous at $x=0$, then $e^{k}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
3
If $0 \leq x \leq \frac{\pi}{2}$, then $\lim _{x \rightarrow a} \frac{|2 \cos x-1|}{2 \cos x-1}$
TG EAPCET 2024 (Online) 10th May Evening Shift
4
The real valued function $f(x)=\frac{|x-a|}{x-a}$ is
TG EAPCET 2024 (Online) 10th May Evening Shift
5
If $f(x)=3 x^{15}-5 x^{10}+7 x^{5}+50 \cos (x-1)$, then $\lim\limits_{h \rightarrow 0} \frac{f(1-h)-f(1)}{h^{3}+3 h}$
TG EAPCET 2024 (Online) 10th May Evening Shift
6
If the function $f(x)=\left\{\begin{array}{cl}\frac{\left(e^{k x}-1\right) \sin k x}{4 \tan x} & x \neq 0 \\ P & x=0\end{array}\right.$ is differentiable at $x=0$, then
TG EAPCET 2024 (Online) 10th May Evening Shift
7
If Rolle's Theorem is applicable for the function $f(x)=\left\{\begin{array}{cl}x^{p} \log x, & x \neq 0 \\ 0, & x=0\end{array}\right.$ on the interval $[0,1]$, then a possible value of $p$ is
TG EAPCET 2024 (Online) 10th May Evening Shift
8
If $\lim \limits_{x \rightarrow 4} \frac{2 x^2+(3+2 a) x+3 a}{x^3-2 x^2-23 x+60}=\frac{11}{9}$, then $\lim \limits_{x \rightarrow a} \frac{x^2+9 x+20}{x^2-x-20}=$
TG EAPCET 2024 (Online) 10th May Morning Shift
9
If the function $$ f(x)= \begin{cases}\frac{\tan a(x-1)}{x-1}, & \text { if } 04\end{cases} $$ domain, then $6 a+9 b^4=$
TG EAPCET 2024 (Online) 10th May Morning Shift
10
$\lim _{\theta \rightarrow \frac{\pi^{-}}{2}} \frac{8 \tan ^4 \theta+4 \tan ^2 \theta+5}{(3-2 \tan \theta)^4}=$
TG EAPCET 2024 (Online) 9th May Evening Shift
11

Define $ f: R \rightarrow R $ by $ f(x)=\left\{\begin{array}{cl}\frac{1-\cos 4 x}{x^{2}}, & x < 0 \\ a, & x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & x > 0\end{array}\right. $

Then, the value of $ a $ so that $ f $ is continuous at $ x=0 $ is

TG EAPCET 2024 (Online) 9th May Evening Shift
12

$\lim _{x \rightarrow 0} \frac{3^{\sin x}-2^{\tan x}}{\sin x}=$

TG EAPCET 2024 (Online) 9th May Morning Shift
13

If the function

$$ f(x)=\left\{\begin{array}{cc} \frac{\cos a x-\cos 9 x}{x^2} & \text {, if } x \neq 0 \\ 16 & \text {, if } x=0 \end{array}\right. $$

is continuous at $x=0$, then $a=$

TG EAPCET 2024 (Online) 9th May Morning Shift
14

If $ f(x)=\left\{\begin{array}{ll}\frac{8}{x^{3}}-6 x & \text {, if } 0 < x \leq 1 \\\\ \frac{x-1}{\sqrt{x}-1} & \text {,if } x > 1\end{array}\right. $ is a real valued function, then at $ x=1, f $ is

TG EAPCET 2024 (Online) 9th May Morning Shift
15
$\lim \limits_{n \rightarrow \infty}\left[\left(1+\frac{1}{n^2}\right)\left(1+\frac{4}{n^2}\right)\left(1+\frac{9}{n^2}\right) \ldots .(2)\right]^{1 / n}=$
TG EAPCET 2024 (Online) 9th May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12