1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the tangent drawn at a point $P(t)$ on the hyperbola $x^{2}-y^{2}=c^{2}$ cuts $X$-axis at $T$ and the normal drawn at the same point $P$ cuts the $Y$-axis at $N$, then the equation of the locus of the mid-point of $T N$ is
A
$\frac{c^{2}}{4 x^{2}}-\frac{y^{2}}{c^{2}}=1$
B
$\frac{x^{2}}{c^{2}}-\frac{y^{2}}{4 c^{2}}=1$
C
$\frac{x^{2}}{4 c^{2}}+\frac{y^{2}}{c^{2}}=1$
D
$x^{2}+y^{2}=4 c^{2}$
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The slope of the tangent drawn from the point $(1,1)$ to the hyperbola $2 x^2-y^2=4$ is
A
2
B
$\frac{-2 \pm \sqrt{6}}{2}$
C
$-1 \pm \sqrt{6}$
D
$\frac{-2 \pm \sqrt{3}}{2}$
3
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$(p, q)$ is the point of intersection of a latus rectum and an asymptote of the hyperbola $9 x^2-16 y^2=144$. If $p>0$ and $q>0$, then $q=$
A
$\frac{9}{4}$
B
$\frac{7}{4}$
C
$\frac{15}{4}$
D
$\frac{13}{4}$
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The point of intersection of two tangents drawn to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{4}=1$ lie on the circle $x^2+y^2=5$. If these tangents are perpendicular to each other, then $a=$
A
25
B
5
C
9
D
3
TS EAMCET Subjects
EXAM MAP