Three Dimensional Geometry · Mathematics · TS EAMCET

Start Practice

MCQ (Single Correct Answer)

1
A plane $\pi$ passing through the points $2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}, 3 \hat{\mathbf{i}}+4 \hat{\mathbf{k}}$ is parallel to the vector $2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$. If a line joining the points $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$ and $\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ intersects the plane $\pi$ at the point $a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}$, then $a+b+2 c=$
TG EAPCET 2024 (Online) 11th May Morning Shift
2
$\hat{\mathbf{r}} .(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})=5$ and $\hat{\mathbf{r}} .(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})=3$ are two planes. A plane $\pi$ passing through the line of intersection of these two planes, passes through the point $(0,1,2)$. If the equation of $\pi$ is $\hat{\mathbf{r}} .(a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}})=m$, then $\frac{b c}{a^{2}}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
3
If $A(-2,4, a), B(1, b, 3), C(c, 0,4)$ and $D(-5,6,1)$ are collinear points, then $a+b+c=$
TG EAPCET 2024 (Online) 11th May Morning Shift
4
$A(1,-2,1)$ and $B(2,-1,2)$ are the end points of a line segment. If $D(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn from $C(1,2,3)$ to $A B$, then $\alpha^{2}+\beta^{2}+\gamma^{2}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
5
The foot of the perpendicular drawn from the point $(-2,-1,3)$ to a plane $\pi$ is $(1,0,-2)$. If $a, b, c$ are the intercepts made by the plane $\pi$ on $X, Y, Z$-axis respectively, then $3 a+b+5 c=$
TG EAPCET 2024 (Online) 11th May Morning Shift
6
$\mathbf{n}$ is a unit vector normal to the plane $\pi$ containing the vectors $\hat{\mathbf{i}}+3 \hat{\mathbf{k}}$ and $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$. If this plane $\pi$ passes through the point $(-3,7,1)$ and $p$ is the perpendicular distance from the origin to this plane $\pi$, then $\sqrt{p^{2}+5}=$
TG EAPCET 2024 (Online) 10th May Evening Shift
7
If the harmonic conjugate of $P(2,3,4)$ with respect to the line segment joining the points $A(3,-2,2)$ and $B(6,-17,-4)$ is $Q(\alpha, \beta, \gamma)$, then $\alpha+\beta+\gamma=$
TG EAPCET 2024 (Online) 10th May Evening Shift
8
If $L$ is the line of intersection of two planes $x+2 y+2 z=15$ and $x-y+z=4$ and the direction ratio of the line $L$ are $(a, b, c)$, then $\frac{\left(a^{2}+b^{2}+c^{2}\right)}{b^{2}}=$
TG EAPCET 2024 (Online) 10th May Evening Shift
9
The foot of the perpendicular drawn from $A(1,2,2)$ oril the the plane $x+2 y+2 z-5=0$ is $B(\alpha, \beta, \gamma)$. If $\pi(x, y, z)$ $=x+2 y+2 z+5=0$ is a plane, then $-\pi(A): \pi(B)=$
TG EAPCET 2024 (Online) 10th May Evening Shift
10
A plane $\pi_1$ passing through the point $3 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ is perpendicular to the vector $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ and another plane $\pi_2$ passing through the point $2 \hat{\mathbf{i}}+7 \hat{\mathbf{k}}-8 \hat{\mathbf{k}}$ is perpendicular to the vector $3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}$. If $p_1$ and $p_2$ are the perpendicular distances from the origin to the planes $\pi_1$ and $\pi_2$ respectively, then $p_1-p_2=$
TG EAPCET 2024 (Online) 10th May Morning Shift
11
$A(2,3, k), B(-1, k,-1)$ and $C(4,-3,2)$ are the vertices of $\triangle A B C$. If $A B=A C$ and $k>0$, then $\triangle A B C$ is
TG EAPCET 2024 (Online) 10th May Morning Shift
12
If $a, b$ and $c$ are the intercepts made on $X, Y, Z$-axes respectively by the plane passing through the points $(1,0,-2),(3,-1,2)$ and $(0,-3,4)$, then $3 a+4 b+7 c=$
TG EAPCET 2024 (Online) 10th May Morning Shift
13
If $\hat{\mathbf{i}}+\hat{\mathbf{j}}, \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{k}}+\hat{\mathbf{i}}, \hat{\mathbf{i}}-\hat{\mathbf{j}}, \hat{\mathbf{j}}-\hat{\mathbf{k}}$ are the position vectors of the points $A, B, C, D, E$ respectively, then the point of intersection of the line $A B$ and the plane passing through $C, D, E$ is.
TG EAPCET 2024 (Online) 9th May Evening Shift
14
A plane $(\pi)$ passing through the point $(1,2,-3)$ is perpendicular to the planes $x+y-z+4=0$ and $2 x-y+z+1=0$. If the equation of the plane $(\pi)$ is $a x+b y+c z+1=0$, then $a^2+b^2+c^2=$
TG EAPCET 2024 (Online) 9th May Evening Shift
15
If the ratio of the perpendicular distances of a variable point $P(x, y, z)$ from the $X$-axis and from the $Y Z$ - plane is $2: 3$, then the equation of the locus of $P$ is
TG EAPCET 2024 (Online) 9th May Morning Shift
16
The direction cosines of two lines are connected by the relations $l-m+n=0$ and $2 l m-3 m n+n l=0$. If $\theta$ is the angle between these two lines, then $\cos \theta=$
TG EAPCET 2024 (Online) 9th May Morning Shift
17
A plane $\pi$ passes through the points $(5,1,2),(3,-4,6)$ and $(7,0,-1)$. If $p$ is the perpendicular distance from the origin to the plane $\pi$ and $l, m$ and $n$ are the direction cosines of a normal to the plane $\pi$, the $|3 l+2 m+5 n|=$
TG EAPCET 2024 (Online) 9th May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12