1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $f(x)$ is a quadratic function such that $f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$, then $\sqrt{f\left(\frac{2}{3}\right)+f\left(\frac{3}{2}\right)}=$
A
$\frac{25}{12}$
B
$\frac{10}{3}$
C
$\frac{13}{6}$
D
$\frac{41}{20}$
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\alpha$ is a root of the equation $x^{2}-x+1=0$, then $\left(\alpha+\frac{1}{\alpha}\right)^{3}+\left(\alpha^{2}+\frac{1}{\alpha^{2}}\right)^{3}+\left(\alpha^{3}+\frac{1}{\alpha^{3}}\right)^{3}+\left(\alpha^{4}+\frac{1}{\alpha^{4}}\right)^{3}=$
A
0
B
1
C
-3
D
-9
3
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\alpha, \beta$ are the real roots of the equation $x^{2}+a x+b=0$. If $\alpha+\beta=\frac{1}{2}$ and $\alpha^{3}+\beta^{3}=\frac{37}{8}$, then $a-\frac{1}{b}=$
A
$\frac{-1}{6}$
B
$\frac{3}{2}$
C
$\frac{-3}{2}$
D
$\frac{1}{6}$
4
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\alpha, \beta, \gamma$ are the roots of the equation $4 x^{3}-3 x^{2}+2 x-1=0$, then $\alpha^{3}+\beta^{3}+\gamma^{3}=$
A
$\frac{2}{27}$
B
$\frac{1}{8}$
C
$\frac{3}{64}$
D
$\frac{27}{128}$
TS EAMCET Subjects
EXAM MAP