Vector Algebra · Mathematics · TS EAMCET

Start Practice

MCQ (Single Correct Answer)

1
$2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ are the position vectores of two points $A$ and $B$ respectively and $C$ divides $A B$ in the ratio $3: 2$ : If $3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is the position of vector of a point $D$, then the unit vector in the direction of $C D$ is
TG EAPCET 2024 (Online) 11th May Morning Shift
2
A unit vector $\hat{\mathbf{e}}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}$ is coplanar with the vectors $\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$, and $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-5 \hat{\mathbf{k}}$. If $\hat{\mathbf{e}}$ is perpendicular to the vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$, then $2 a^{2}+3 b^{2}+4 c^{2}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
3
$\mathbf{a}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \hat{\mathbf{b}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{c}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ are three vectors. If $\hat{\mathbf{d}}$ is a normal to the plane of $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ and d. $\hat{\mathbf{c}}=2$, then $|\hat{\mathbf{d}}|=$
TG EAPCET 2024 (Online) 11th May Morning Shift
4
If $\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \mathbf{c}=-\hat{\mathbf{k}}$ are position vectors of two points and $\mathbf{b}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}, \mathbf{d}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ are two vectors, then the lines $\mathbf{r}=\mathbf{a}+t \mathbf{b}, \mathbf{r}=\mathbf{c}+s \mathbf{d}$ are
TG EAPCET 2024 (Online) 10th May Evening Shift
5
$\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three vectors each having $\sqrt{2}$ magnitude such that $(\mathbf{a}, \mathbf{b})=(\mathbf{b}, \mathbf{c})=(\mathbf{c}, \mathbf{a})=\frac{\pi}{3}$. If $\mathbf{x}=\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ and $\mathbf{y}=\mathbf{b} \times(\mathbf{c} \times \mathbf{a})$, then
TG EAPCET 2024 (Online) 10th May Evening Shift
6

$\mathbf{a}$ is a vector perpendicular to the plane containing non zero vectors $\mathbf{b}$ and $\mathbf{c}$. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are such that

$|\mathbf{a}+\mathbf{b}+\mathbf{c}|=\sqrt{|\mathbf{a}|^{2}+|\mathbf{b}|^{2}+|\mathbf{c}|^{2}}$, then

$|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|+|(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}|=$

TG EAPCET 2024 (Online) 10th May Evening Shift
7
If $\mathbf{a}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}, \mathbf{b}=3(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})$ and $\mathbf{c}$ is a vector such that $\mathbf{a} \times \mathbf{c}=\mathbf{b}$ and $\mathbf{a} . \mathbf{c}=3$, then $\mathbf{a} \cdot(\mathbf{c} \times \mathbf{b}-\mathbf{b}-\mathbf{c})=$
TG EAPCET 2024 (Online) 10th May Evening Shift
8
$P$ and $Q$ are the points of trisection of the segment $A B$. If $2 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ and $4 \hat{\mathbf{i}}+\hat{\mathbf{j}}-6 \hat{\mathbf{k}}$ are the position vectors of $A$ and $B$ respectively, then the position vector of the point which divides $P Q$ in the ratio $2: 3$ is
TG EAPCET 2024 (Online) 10th May Morning Shift
9
The position vector of the point of intersection of the line joining the points $\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ and the line joining the points $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-6 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-7 \hat{\mathbf{k}}$ is
TG EAPCET 2024 (Online) 10th May Morning Shift
10
If $\mathbf{a}=4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ and $\mathbf{b}=6 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ are two vectors, then the magnitude of the component of $\mathbf{b}$ parallel to $\mathbf{a}$ is
TG EAPCET 2024 (Online) 10th May Morning Shift
11
$\mathbf{a}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}, \mathbf{b}=2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\mathbf{c}=2 \hat{\mathbf{k}}-\hat{\mathbf{i}}$ are three vectors and $\mathbf{d}$ is a unit vector perpendicular to $\mathbf{c}$. If $\mathbf{a}, \mathbf{b}$ and $\mathbf{d}$ are coplanar vectors, then $|\mathbf{d} \cdot \mathbf{b}|=$
TG EAPCET 2024 (Online) 10th May Morning Shift
12
$\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar vectors. If the three points $\lambda a-2 b+c, 2 a+\lambda b-2 \mathbf{c}$ and $4 \mathbf{a}+7 \mathbf{b}-8 \mathbf{c}$ are collinear, then $\lambda=$
TG EAPCET 2024 (Online) 9th May Evening Shift
13
If $\mathrm{a}, \mathrm{b}$ are two vectors such that $|\mathrm{a}|=3,|\mathrm{~b}|=4$, $|\mathbf{a}+\mathbf{b}|=\sqrt{37},|\mathbf{a}-\mathbf{b}|=k$ and $(\mathbf{a}, \mathbf{b})=\theta$, then $\frac{4}{13}(k \sin \theta)^2=$
TG EAPCET 2024 (Online) 9th May Evening Shift
14
$r$ is a vector perpendicular to the planet, determined by the vectors $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}$ and $\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$, If the magnitude of the projection of $\mathbf{r}$ on the vector $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is l , then $|\mathbf{r}|=$
TG EAPCET 2024 (Online) 9th May Evening Shift
15
$\mathbf{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \mathbf{k}, \quad \mathbf{c}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ are two vectors and $\mathbf{a}$ is a vector such that $\cos (\mathbf{a}, \mathbf{b} \times \mathbf{c})=\sqrt{\frac{2}{3}}$. If $\mathbf{a}$ is a unit vector, then $|\mathbf{a} \times(\mathbf{b} \times \mathbf{c})|=$
TG EAPCET 2024 (Online) 9th May Evening Shift
16
$A(3,2,-1), B(4,1,0), C(2,1,4)$ are the vertices of a $\triangle A B C$. If the bisector of $B A C$ ! intersects the side $B C$ at $D(p, q, r)$, then $\sqrt{2 p+q+r}=$
TG EAPCET 2024 (Online) 9th May Evening Shift
17
$(3,0,2)$ and $(0,2, k)$ are the direction ratios of two lines and $\theta$ is the angle between them. If $|\cos \theta|=\frac{6}{13}$, then $k=$
TG EAPCET 2024 (Online) 9th May Evening Shift
18
$\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ are the position vectors of the vertices $A, B$ and $C$ of a $\triangle A B C$ respectively. If $D$ and $E$ are the mid points of $B C$ and $C A$ respectively, then the unit vector along DE is
TG EAPCET 2024 (Online) 9th May Morning Shift
19
A vector of magnitude $\sqrt{2}$ units along the internal bisector of the angle between the vectors $2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is
TG EAPCET 2024 (Online) 9th May Morning Shift
20
If $\theta$ is the angle between the vectors $4 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$, then $\sin 2 \theta=$
TG EAPCET 2024 (Online) 9th May Morning Shift
21
$\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are three vectors such that $|a|=3,|b|=2 \sqrt{2},|c|=5$ and $\mathbf{c}$ is perpendicular to the plane of $\mathbf{a}$ and $\mathbf{b}$. If the angle between the vectors a and $\mathbf{b}$ is $\frac{\pi}{4}$, then $|\mathbf{a}+\mathbf{b}+\mathbf{c}|=$
TG EAPCET 2024 (Online) 9th May Morning Shift
22
If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are non-coplanar vectors and the points $\lambda \mathbf{a}+3 \mathbf{b}-\mathbf{c}, \mathbf{a}-\lambda \mathbf{b}+3 \mathbf{c}, 3 \mathbf{a}+4 \mathbf{b}-\lambda \mathbf{c}$ and $\mathbf{a}-6 b+6 \mathbf{c}$ are coplanar, then one of the values of $\lambda$ is
TG EAPCET 2024 (Online) 9th May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12