1
If $z=\frac{(2-i)(1+i)^{3}}{(1-i)^{2}}$, then $\arg (z)=$
TG EAPCET 2024 (Online) 11th May Morning Shift
2
$z=x+i y$ and the point $P$ represents $z$ in the argand plane. If the amplitude of $\left(\frac{2 z-i}{z+2 i}\right)$ is $\frac{\pi}{4}$, then the equation of the locus of $P$ is
TG EAPCET 2024 (Online) 11th May Morning Shift
3
$\alpha, \beta$ are the roots of the equation $x^{2}+2 x+4=0$. If the point representing $\alpha$ in the argand diagram lies in the 2nd quadrant and $\alpha^{2024}-\beta^{2024}=i k,(i=\sqrt{-1})$, then $k=$
TG EAPCET 2024 (Online) 11th May Morning Shift
4
If $z=x+i y$ satisfies the equation $z^{2}+a z+a^{2}=0, a \in R$, then
TG EAPCET 2024 (Online) 10th May Evening Shift
5
If $z_{1}, z_{2}, z_{3}$ are three complex numbers with unit modulus such that $\left|z_{1}-z_{2}\right|^{2}+\left|z_{1}-z_{3}\right|^{2}=4$, then $z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}+z_{1} \bar{z}_{3}+\bar{z}_{1} z_{3}=$
TG EAPCET 2024 (Online) 10th May Evening Shift
7
If $z_{1}=\sqrt{3}+i \sqrt{3}$ and $z_{2}=\sqrt{3}+i$, and $\left(\frac{z_{1}}{z_{2}}\right)^{50}=x+i y$, then the point $(x, y)$ lies in
TG EAPCET 2024 (Online) 10th May Evening Shift
8
The roots of the equation $x^{3}-3 x^{2}+3 x+7=0$ are $\alpha, \beta, \lambda$ and $\omega, \omega^{2}$ are complex cube roots of unity, If the terms containing $x^{2}$ and $x$ are missing in the transformed equation when each one of these roots is decreased by $h$, then $\frac{\alpha-h}{\beta-h}+\frac{\beta-h}{\gamma-h}+\frac{\gamma-h}{\alpha-h}=$
TG EAPCET 2024 (Online) 10th May Evening Shift
9
If $x$ and $y$ are two positive real numbers such that $x+i y=\frac{13 \sqrt{-5+12 i}}{(2-3 i)(3+2 i)}$, then $13 y-26 x=$
TG EAPCET 2024 (Online) 10th May Morning Shift
10
If $z=x+i y$ and if the point $P$ represents $z$ in the argand plane, then the locus of $z$ satisfying the equation $|z-1|+|z+i|=2$ is
TG EAPCET 2024 (Online) 10th May Morning Shift
11
One of the values of $(-64 i)^{5 / 6}$ is
TG EAPCET 2024 (Online) 10th May Morning Shift
12
If $\frac{(2-i) x+(1+i)}{2+i}+\frac{(1-2 i) y+(1-i)}{1+2 i}=1-2 i$, then $2 x+4 y=$
TG EAPCET 2024 (Online) 9th May Evening Shift
13
If $z=1-\sqrt{3} i$, then $z^3-3 z^2+3 z=$
TG EAPCET 2024 (Online) 9th May Evening Shift
14
The product of all the values of $(\sqrt{3}-i)^{\frac{2}{5}}$ is
TG EAPCET 2024 (Online) 9th May Evening Shift
15
The number of common roots among the 12 th and 30th roots of unity is
TG EAPCET 2024 (Online) 9th May Evening Shift
19
One of the roots of the equation $x^{14}+x^9-x^5-1=0$ is
TG EAPCET 2024 (Online) 9th May Morning Shift
24
If $z_1$ and $z_2$ are complex numbers such that $\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|$, then the difference in the amplitude of $z_1$ and $z_2$ is
TS EAMCET 2023 (Online) 12th May Morning Shift
25
If $i=\sqrt{-1}$, then $1+i^2+i^4+i^6+\ldots \ldots+i^{2024}=$
TS EAMCET 2023 (Online) 12th May Morning Shift
26
If $\frac{1+i \cos \theta}{1-2 i \cos \theta}$ is purely real, then $\cos ^3 \theta+\sin ^2 \theta+\cos \theta+1=$
TS EAMCET 2023 (Online) 12th May Morning Shift
27
If $\theta=\frac{\pi}{6}$, then the 10 th term of the series $1+(\cos \theta+i \sin \theta)^1+(\cos \theta+i \sin \theta)^2+\ldots$. is
TS EAMCET 2023 (Online) 12th May Morning Shift
28
If $\alpha$ and $\beta$ are non-zero integers and $z=(\alpha+i \beta)(2+7 i)$ is a purely imaginary number, then minimum value of $|z|^2$ is
TS EAMCET 2023 (Online) 12th May Morning Shift