Complex Numbers · Mathematics · TS EAMCET

Start Practice

MCQ (Single Correct Answer)

1
If $z=\frac{(2-i)(1+i)^{3}}{(1-i)^{2}}$, then $\arg (z)=$
TG EAPCET 2024 (Online) 11th May Morning Shift
2
$z=x+i y$ and the point $P$ represents $z$ in the argand plane. If the amplitude of $\left(\frac{2 z-i}{z+2 i}\right)$ is $\frac{\pi}{4}$, then the equation of the locus of $P$ is
TG EAPCET 2024 (Online) 11th May Morning Shift
3
$\alpha, \beta$ are the roots of the equation $x^{2}+2 x+4=0$. If the point representing $\alpha$ in the argand diagram lies in the 2nd quadrant and $\alpha^{2024}-\beta^{2024}=i k,(i=\sqrt{-1})$, then $k=$
TG EAPCET 2024 (Online) 11th May Morning Shift
4
If $z=x+i y$ satisfies the equation $z^{2}+a z+a^{2}=0, a \in R$, then
TG EAPCET 2024 (Online) 10th May Evening Shift
5
If $z_{1}, z_{2}, z_{3}$ are three complex numbers with unit modulus such that $\left|z_{1}-z_{2}\right|^{2}+\left|z_{1}-z_{3}\right|^{2}=4$, then $z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}+z_{1} \bar{z}_{3}+\bar{z}_{1} z_{3}=$
TG EAPCET 2024 (Online) 10th May Evening Shift
6

If $\omega$ is the complex cube root of unity and

$\left(\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}\right)^{k}+\left(\frac{a+b \omega+c \omega^{2}}{b+a \omega^{2}+c \omega}\right)^{l}=2$, then $2 k+l$ is always

TG EAPCET 2024 (Online) 10th May Evening Shift
7
If $z_{1}=\sqrt{3}+i \sqrt{3}$ and $z_{2}=\sqrt{3}+i$, and $\left(\frac{z_{1}}{z_{2}}\right)^{50}=x+i y$, then the point $(x, y)$ lies in
TG EAPCET 2024 (Online) 10th May Evening Shift
8
The roots of the equation $x^{3}-3 x^{2}+3 x+7=0$ are $\alpha, \beta, \lambda$ and $\omega, \omega^{2}$ are complex cube roots of unity, If the terms containing $x^{2}$ and $x$ are missing in the transformed equation when each one of these roots is decreased by $h$, then $\frac{\alpha-h}{\beta-h}+\frac{\beta-h}{\gamma-h}+\frac{\gamma-h}{\alpha-h}=$
TG EAPCET 2024 (Online) 10th May Evening Shift
9
If $x$ and $y$ are two positive real numbers such that $x+i y=\frac{13 \sqrt{-5+12 i}}{(2-3 i)(3+2 i)}$, then $13 y-26 x=$
TG EAPCET 2024 (Online) 10th May Morning Shift
10
If $z=x+i y$ and if the point $P$ represents $z$ in the argand plane, then the locus of $z$ satisfying the equation $|z-1|+|z+i|=2$ is
TG EAPCET 2024 (Online) 10th May Morning Shift
11
One of the values of $(-64 i)^{5 / 6}$ is
TG EAPCET 2024 (Online) 10th May Morning Shift
12
If $\frac{(2-i) x+(1+i)}{2+i}+\frac{(1-2 i) y+(1-i)}{1+2 i}=1-2 i$, then $2 x+4 y=$
TG EAPCET 2024 (Online) 9th May Evening Shift
13
If $z=1-\sqrt{3} i$, then $z^3-3 z^2+3 z=$
TG EAPCET 2024 (Online) 9th May Evening Shift
14
The product of all the values of $(\sqrt{3}-i)^{\frac{2}{5}}$ is
TG EAPCET 2024 (Online) 9th May Evening Shift
15
The number of common roots among the 12 th and 30th roots of unity is
TG EAPCET 2024 (Online) 9th May Evening Shift
16

If $\sqrt{5}-i \sqrt{15} \doteqdot r(\cos \theta+i \sin \theta),-\pi<\theta<\pi$, then $r^2\left(\sec \theta+3 \operatorname{cosec}^2 \theta\right)=$

TG EAPCET 2024 (Online) 9th May Morning Shift
17

The point $P$ denotes the complex number $z=x+i y$ in the argand plane. If $\frac{2 z-i}{z-2}$ is a purely real number, then the equation of the locus of $P$ is

TG EAPCET 2024 (Online) 9th May Morning Shift
18

$x$ and $y$ are two complex numbers such that $|x|=|y|=1$.

If $\arg (x)=2 \alpha, \arg (y)=3 \beta$ and $\alpha+\beta=\frac{\pi}{36}$, then $x^6 y^4+\frac{1}{x^6 y^4}=$

TG EAPCET 2024 (Online) 9th May Morning Shift
19
One of the roots of the equation $x^{14}+x^9-x^5-1=0$ is
TG EAPCET 2024 (Online) 9th May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12