Definite Integration · Mathematics · TS EAMCET
MCQ (Single Correct Answer)
1
$\int_{\frac{\pi}{5}}^{\frac{3 \pi}{10}} \frac{d x}{\sec ^{2} x+\left(\tan ^{2024} x-1\right)\left(\sec ^{2} x-1\right)}=$
TG EAPCET 2024 (Online) 11th May Morning Shift
2
$\int_{-\pi / 15}^{\pi / 5} \frac{\cos 5 x}{1+e^{5 x}} d x=$
TG EAPCET 2024 (Online) 11th May Morning Shift
3
$\frac{3}{25} \int_{0}^{25 \pi} \sqrt{\left|\cos x-\cos ^{3} x\right|} d x=$
TG EAPCET 2024 (Online) 10th May Evening Shift
4
If $m, l, r, s, n$ are integers such that $9 > m > l > s > n > r > 2$ and $\int_{-2 \pi}^{2 \pi} \sin ^{m} x \cos ^{n} x d x=4 \int_{0}^{\pi} \sin ^{m} x \cos ^{n} x d x, \int_{-\pi}^{\pi} \sin ^{r} x \cos ^{s} x d x$ $=4 \int_{0}^{\pi / 2} \sin ^{r} x \cos ^{s} x d x$ and $\int_{-\pi / 2}^{\pi / 2} \sin ^{l} x \cos ^{m} x d x=0$, then
TG EAPCET 2024 (Online) 10th May Evening Shift
5
$\int_0^\pi\left(\sin ^3 x+\cos ^2 x\right)^2 d x=$
TG EAPCET 2024 (Online) 10th May Morning Shift
6
$\int_{\frac{-\pi}{8}}^{\frac{\pi}{8}} \frac{\sin ^4(4 x)}{1+e^{4 x}} d x=$
TG EAPCET 2024 (Online) 10th May Morning Shift
7
$ \int_{\frac{-3}{4}}^{\frac{\pi-6}{8}} \log (\sin (4 x+3)) d x= $
TG EAPCET 2024 (Online) 9th May Evening Shift
8
$\int_0^{16} \frac{\sqrt{x}}{1+\sqrt{x}} d x=$
TG EAPCET 2024 (Online) 9th May Evening Shift
9
$\int_0^{32 \pi} \sqrt{1-\cos 4 x} d x=$
TG EAPCET 2024 (Online) 9th May Evening Shift
10
If $f(x)=\int \frac{\sin 2 x+2 \cos x}{4 \sin ^2 x+5 \sin x+1} d x$ and $f(0)=0$, then $f(\pi / 6)=$
TG EAPCET 2024 (Online) 9th May Morning Shift
11
$\int_{-2}^2 x^4\left(4-x^2\right)^{\frac{7}{2}} d x=$
TG EAPCET 2024 (Online) 9th May Morning Shift