1
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$x{{dy} \over {dx}} + y = x{{f(xy)} \over {f'(xy)}}$$, then $$|f(xy)|$$ is equal to

A
$$C{e^{{{{x^2}} \over 2}}}$$ (where C is the constant of integration)
B
$$C{e^{{x^2}}}$$ (where C is the constant of integration)
C
$$C{e^{2{x^2}}}$$ (where C is the constant of integration)
D
$$C{e^{{{{x^2}} \over 3}}}$$ (where C is the constant of integration)
2
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

The solution of

$$\cos y{{dy} \over {dx}} = {e^{x + \sin y}} + {x^2}{e^{\sin y}}$$ is $$f(x) + {e^{ - \sin y}} = C$$ (C is arbitrary real constant) where f(x) is equal to

A
$${e^x} + {1 \over 2}{x^3}$$
B
$${e^{ - x}} + {1 \over 3}{x^3}$$
C
$${e^{ - x}} + {1 \over 2}{x^3}$$
D
$${e^x} + {1 \over 3}{x^3}$$
3
WB JEE 2022
MCQ (Single Correct Answer)
+2
-0.5
Change Language

If the transformation $$z = \log \tan {x \over 2}$$ reduces the differential equation

$${{{d^2}y} \over {d{x^2}}} + \cot x{{dy} \over {dx}} + 4y\cos e{c^2}x = 0$$ into the form $${{{d^2}y} \over {d{z^2}}} + ky = 0$$ then k is equal to

A
$$-$$4
B
4
C
2
D
$$-$$2
4
WB JEE 2021
MCQ (Single Correct Answer)
+1
-0.25
Change Language
The differential equation of all the ellipses centred at the origin and have axes as the co-ordinate axes is where $$y^{\prime}\equiv{{{dx}\over {dy}}},y^{\prime\prime}\equiv{{{d^2}y\over {dx^2}}}$$
A
y2 + xy'2 $$-$$ yy' = 0
B
xyy'' + xy'2 $$-$$ yy' = 0
C
yy' + xy'2 $$-$$ xy' = 0
D
x2y' + xy'' $$-$$ 3y = 0
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12