Indefinite Integrals · Mathematics · WB JEE

Start Practice

Subjective

MCQ (Single Correct Answer)

1

$$\int {{{dx} \over {x(x + 1)}}} $$ equals

where c is arbitrary constant.

WB JEE 2009
2

The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + ..... + {n \over {{n^2} + {n^2}}}} \right]$$ is

WB JEE 2009
3

The value of $$\int\limits_{ - 1}^1 {{{|x + 2|} \over {x + 2}}dx} $$ is

WB JEE 2009
4

$$\int {{{dx} \over {\sin x + \sqrt 3 \cos x}}} $$ equals

WB JEE 2009
5

$$\int {{{{{\sin }^{ - 1}}x} \over {\sqrt {1 - {x^2}} }}dx} $$ equal to

where c is an arbitrary constant

WB JEE 2009
6

$$\int {{{\log \sqrt x } \over {3x}}dx} $$ is equal to

WB JEE 2010
7

$$\int {{e^x}\left( {{2 \over x} - {2 \over {{x^2}}}} \right)dx} $$ is equal to

WB JEE 2010
8

The value of the integral $$\int {{{dx} \over {{{({e^x} + {e^{ - x}})}^2}}}} $$ is

WB JEE 2010
9

$$\int {\sqrt {1 + \cos x} dx} $$ is equal to

WB JEE 2010
10

$$\int {{{{x^3}dx} \over {1 + {x^8}}} = } $$

WB JEE 2011
11

$$\int {{{\cos 2x} \over {\cos x}}dx = } $$

WB JEE 2011
12

$$\int {{{{{\sin }^8}x - {{\cos }^8}x} \over {1 - 2{{\sin }^2}x{{\cos }^2}x}}dx} $$

WB JEE 2011
13

$$\int {{2^x}(f'(x) + f(x)\log 2)dx} $$ is

WB JEE 2011
14

$$ \text { If } \int \frac{\log _e\left(x+\sqrt{1+x^2}\right)}{\sqrt{1+x^2}} \mathrm{~d} x=\mathrm{f}(\mathrm{g}(x))+\mathrm{c} \text { then } $$

WB JEE 2024
15

If $$I = \int {{{{x^2}dx} \over {{{(x\sin x + \cos x)}^2}}} = f(x) + \tan x + c} $$, then $$f(x)$$ is

WB JEE 2023
16

If $$\int {{{dx} \over {(x + 1)(x - 2)(x - 3)}} = {1 \over k}{{\log }_e}\left\{ {{{|x - 3{|^3}|x + 1|} \over {{{(x - 2)}^4}}}} \right\} + c} $$, then the value of k is

WB JEE 2023
17

$$I = \int {\cos (\ln x)dx} $$. Then I =

WB JEE 2022
18

Let $$\int {{{{x^{{1 \over 2}}}} \over {\sqrt {1 - {x^3}} }}dx = {2 \over 3}g(f(x)) + c} $$ ; then

(c denotes constant of integration)

WB JEE 2022
19
If $$\int {{{\sin 2x} \over {{{(a + b\cos x)}^2}}}dx} = \alpha \left[ {{{\log }_e}\left| {a + b\cos x} \right| + {a \over {a + b\cos x}}} \right] + c$$, then $$\alpha$$ is equal to
WB JEE 2021
20
$$\int {{{f(x)\phi '(x) + \phi (x)f'(x)} \over {(f(x)\phi (x) + 1)\sqrt {f(x)\phi (x) - 1} }}dx = } $$
WB JEE 2020
21
If $$\int {\cos x\log \left( {\tan {x \over 2}} \right)} dx$$ = $$\sin x\log \left( {\tan {x \over 2}} \right)$$ + f(x), then f(x) is equal to (assuming c is a arbitrary real constant).
WB JEE 2019
22
y = $$\int {\cos \left\{ {2{{\tan }^{ - 1}}\sqrt {{{1 - x} \over {1 + x}}} } \right\}} dx$$ is an equation of a family of
WB JEE 2019
23
If $$\int {{2^{{2^x}}}.\,{2^x}dx} = A\,.\,{2^{{2^x}}} + C$$, then A is equal to
WB JEE 2019
24
If $$\int {{e^{\sin x}}} .\left[ {{{x{{\cos }^3}x - \sin x} \over {{{\cos }^2}x}}} \right]dx = {e^{\sin x}}f(x) + c$$, where c is constant of integration, then f(x) is equal to
WB JEE 2018
25
If $$\int {f(x)} \sin x\cos xdx = {1 \over {2({b^2} - {a^2})}}\log (f(x)) + c$$, where c is the constant of integration, then f(x) is equal to
WB JEE 2018
26
$$\int {\cos (\log x)dx} $$ = F(x) + C, where C is an arbitrary constant. Here, F(x) is equal to
WB JEE 2017
27
$$\int {{{{x^2} - 1} \over {{x^4} + 3{x^2} + 1}}dx} $$ (x > 0) is
WB JEE 2017
28
Let I = $$\left| {\int {_{10}^{19}{{\sin x} \over {1 + {x^8}}}dx} } \right|$$. Then,
WB JEE 2017
29
$$\int {{2^x}[f'(x) + f(x)\log 2]dx} $$ is equal to
WB JEE 2016
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12