Indefinite Integrals · Mathematics · WB JEE

Start Practice

Subjective

WB JEE 2008
Evaluate $$\int {{{{x^2}} \over {x(1 + {x^2})}}dx} $$

MCQ (Single Correct Answer)

WB JEE 2009
$$\int {{{dx} \over {x(x + 1)}}} $$ equals where c is arbitrary constant.
WB JEE 2009
The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + ..... + {n \over {{n^2} + {n^2}}...
WB JEE 2009
The value of $$\int\limits_{ - 1}^1 {{{|x + 2|} \over {x + 2}}dx} $$ is
WB JEE 2009
$$\int {{{dx} \over {\sin x + \sqrt 3 \cos x}}} $$ equals
WB JEE 2009
$$\int {{{{{\sin }^{ - 1}}x} \over {\sqrt {1 - {x^2}} }}dx} $$ equal to where c is an arbitrary constant
WB JEE 2010
$$\int {{{\log \sqrt x } \over {3x}}dx} $$ is equal to
WB JEE 2010
$$\int {{e^x}\left( {{2 \over x} - {2 \over {{x^2}}}} \right)dx} $$ is equal to
WB JEE 2010
The value of the integral $$\int {{{dx} \over {{{({e^x} + {e^{ - x}})}^2}}}} $$ is
WB JEE 2010
$$\int {\sqrt {1 + \cos x} dx} $$ is equal to
WB JEE 2011
$$\int {{{{x^3}dx} \over {1 + {x^8}}} = } $$
WB JEE 2011
$$\int {{{\cos 2x} \over {\cos x}}dx = } $$
WB JEE 2011
$$\int {{{{{\sin }^8}x - {{\cos }^8}x} \over {1 - 2{{\sin }^2}x{{\cos }^2}x}}dx} $$
WB JEE 2011
$$\int {{2^x}(f'(x) + f(x)\log 2)dx} $$ is
WB JEE 2024
$$ \text { If } \int \frac{\log _e\left(x+\sqrt{1+x^2}\right)}{\sqrt{1+x^2}} \mathrm{~d} x=\mathrm{f}(\mathrm{g}(x))+\mathrm{c} \text { then } $$...
WB JEE 2023
If $$I = \int {{{{x^2}dx} \over {{{(x\sin x + \cos x)}^2}}} = f(x) + \tan x + c} $$, then $$f(x)$$ is
WB JEE 2023
If $$\int {{{dx} \over {(x + 1)(x - 2)(x - 3)}} = {1 \over k}{{\log }_e}\left\{ {{{|x - 3{|^3}|x + 1|} \over {{{(x - 2)}^4}}}} \right\} + c} $$, then ...
WB JEE 2022
$$I = \int {\cos (\ln x)dx} $$. Then I =
WB JEE 2022
Let $$\int {{{{x^{{1 \over 2}}}} \over {\sqrt {1 - {x^3}} }}dx = {2 \over 3}g(f(x)) + c} $$ ; then (c denotes constant of integration)
WB JEE 2021
If $$\int {{{\sin 2x} \over {{{(a + b\cos x)}^2}}}dx} = \alpha \left[ {{{\log }_e}\left| {a + b\cos x} \right| + {a \over {a + b\cos x}}} \right] + c...
WB JEE 2020
$$\int {{{f(x)\phi '(x) + \phi (x)f'(x)} \over {(f(x)\phi (x) + 1)\sqrt {f(x)\phi (x) - 1} }}dx = } $$
WB JEE 2019
If $$\int {\cos x\log \left( {\tan {x \over 2}} \right)} dx$$ = $$\sin x\log \left( {\tan {x \over 2}} \right)$$ + f(x), then f(x) is equal to (assumi...
WB JEE 2019
y = $$\int {\cos \left\{ {2{{\tan }^{ - 1}}\sqrt {{{1 - x} \over {1 + x}}} } \right\}} dx$$ is an equation of a family of
WB JEE 2019
If $$\int {{2^{{2^x}}}.\,{2^x}dx} = A\,.\,{2^{{2^x}}} + C$$, then A is equal to
WB JEE 2018
If $$\int {{e^{\sin x}}} .\left[ {{{x{{\cos }^3}x - \sin x} \over {{{\cos }^2}x}}} \right]dx = {e^{\sin x}}f(x) + c$$, where c is constant of integrat...
WB JEE 2018
If $$\int {f(x)} \sin x\cos xdx = {1 \over {2({b^2} - {a^2})}}\log (f(x)) + c$$, where c is the constant of integration, then f(x) is equal to
WB JEE 2017
$$\int {\cos (\log x)dx} $$ = F(x) + C, where C is an arbitrary constant. Here, F(x) is equal to
WB JEE 2017
$$\int {{{{x^2} - 1} \over {{x^4} + 3{x^2} + 1}}dx} $$ (x > 0) is
WB JEE 2017
Let I = $$\left| {\int {_{10}^{19}{{\sin x} \over {1 + {x^8}}}dx} } \right|$$. Then,
WB JEE 2016
$$\int {{2^x}[f'(x) + f(x)\log 2]dx} $$ is equal to
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12