Inverse Trigonometric Functions · Mathematics · WB JEE
MCQ (Single Correct Answer)
1
The value of $$\tan \alpha + 2\tan (2\alpha ) + 4\tan (4\alpha ) + ... + {2^{n - 1}}\tan ({2^{n - 1}}\alpha ) + {2^n}\cot ({2^n}\alpha )$$ is
WB JEE 2008
2
$$\tan \left[ {{\pi \over 4} + {1 \over 2}{{\cos }^{ - 1}}\left( {{a \over b}} \right)} \right] + \tan \left[ {{\pi \over 4} - {1 \over 2}{{\cos }^{ - 1}}\left( {{a \over b}} \right)} \right]$$ is equal to
WB JEE 2009
3
Value of $${\tan ^{ - 1}}\left( {{{\sin 2 - 1} \over {\cos 2}}} \right)$$ is
WB JEE 2010
4
The solution set of the inequation $${\cos ^{ - 1}}x < {\sin ^{ - 1}}x$$ is
WB JEE 2011
5
For $$y = {\sin ^{ - 1}}\left\{ {{{5x + 12\sqrt {1 - {x^2}} } \over {13}}} \right\};\left| x \right| \le 1$$, if $$a(1 - {x^2}){y_2} + bx{y_1} = 0$$ then (a, b) =
WB JEE 2021
6
If $$0 \le A \le {\pi \over 4}$$, then $${\tan ^{ - 1}}\left( {{1 \over 2}\tan 2A} \right) + {\tan ^{ - 1}}(\cot A) + {\tan ^{ - 1}}({\cot ^3}A)$$
WB JEE 2018
7
The possible values of x, which satisfy the trigonometric equation
$${\tan ^{ - 1}}\left( {{{x - 1} \over {x - 2}}} \right) + {\tan ^{ - 1}}\left( {{{x + 1} \over {x + 2}}} \right) = {\pi \over 4}$$ are
$${\tan ^{ - 1}}\left( {{{x - 1} \over {x - 2}}} \right) + {\tan ^{ - 1}}\left( {{{x + 1} \over {x + 2}}} \right) = {\pi \over 4}$$ are
WB JEE 2017
8
If $$f(x) = {\tan ^{ - 1}}\left[ {{{\log \left( {{e \over {{x^2}}}} \right)} \over {\log (e{x^2})}}} \right] + {\tan ^{ - 1}}\left[ {{{3 + 2\log x} \over {1 - 6\log x}}} \right]$$, then the value of f''(x) is equal to
WB JEE 2016