1
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$x y^{\prime}+y-e^x=0, y(a)=b$$, then $$\lim _\limits{x \rightarrow 1} y(x)$$ is

A
$$e+2 a b-e^a$$
B
$$e^2+a b-e^{-a}$$
C
$$\mathrm{e}-\mathrm{ab}+\mathrm{e}^{\mathrm{a}}$$
D
$$\mathrm{e}+\mathrm{ab}-\mathrm{e}^{\mathrm{a}},\left(\mathrm{y}^{\prime}=\frac{\mathrm{dy}}{\mathrm{d} x}\right)$$
2
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$y = {x \over {{{\log }_e}|cx|}}$$ is the solution of the differential equation $${{dy} \over {dx}} = {y \over x} + \phi \left( {{x \over y}} \right)$$, then $$\phi \left( {{x \over y}} \right)$$ is given by

A
$${{{y^2}} \over {{x^2}}}$$
B
$$ - {{{y^2}} \over {{x^2}}}$$
C
$${{{x^2}} \over {{y^2}}}$$
D
$$ - {{{x^2}} \over {{y^2}}}$$
3
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Given $${{{d^2}y} \over {d{x^2}}} + \cot x{{dy} \over {dx}} + 4y\cos e{c^2}x = 0$$. Changing the independent variable x to z by the substitution $$z = \log \tan {x \over 2}$$, the equation is changed to

A
$${{{d^2}y} \over {d{z^2}}} + {3 \over y} = 0$$
B
$$2{{{d^2}y} \over {d{z^2}}} + {e^y} = 0$$
C
$${{{d^2}y} \over {d{z^2}}} - 4y = 0$$
D
$${{{d^2}y} \over {d{z^2}}} + 4y = 0$$
4
WB JEE 2023
MCQ (Single Correct Answer)
+2
-0.5
Change Language

The family of curves $$y = {e^{a\sin x}}$$, where 'a' is arbitrary constant, is represented by the differential equation

A
$$y\log y = \tan x{{dy} \over {dx}}$$
B
$$y\log x = \cot x{{dy} \over {dx}}$$
C
$$\log y = \tan x{{dy} \over {dx}}$$
D
$$\log y = \cot x{{dy} \over {dx}}$$
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12