Limits, Continuity and Differentiability · Mathematics · WB JEE

Start Practice

MCQ (Single Correct Answer)

1

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{{a^{\cot x}} - {a^{\cos x}}} \over {\cot x - \cos x}},a > 0$$

WB JEE 2008
2

Rolle's theorem is not applicable to the function $$f(x) = |x|$$ for $$ - 2 \le x \le 2$$ because

WB JEE 2008
3

The value of the limit $$\mathop {\lim }\limits_{x \to 2} {{{e^{3x - 6}} - 1} \over {\sin (2 - x)}}$$ is

WB JEE 2008
4

The $$\mathop {\lim }\limits_{x \to 2} {5 \over {\sqrt 2 - \sqrt x }}$$ is

WB JEE 2008
5

A function f(x) is defined as follows for real x

$$f(x) = \left\{ {\matrix{ {1 - {x^2}} & , & {for\,x < 1} \cr 0 & , & {for\,x = 1} \cr {1 + {x^2}} & , & {for\,x > 1} \cr } } \right.$$

Then

WB JEE 2008
6

Let $$f(x) = {{\sqrt {x + 3} } \over {x + 1}}$$, then the value of $$\mathop {\lim }\limits_{x \to - 3 - 0} f(x)$$ is

WB JEE 2009
7

$$f(x) = x + |x|$$ is continuous for

WB JEE 2009
8

The value of $$\mathop {\lim }\limits_{x \to 1} {{\sin ({e^{x - 1}} - 1)} \over {\log x}}$$ is

WB JEE 2009
9

The value of $$\mathop {\lim }\limits_{x \to 0} {{{{\sin }^2}x + \cos x - 1} \over {{x^2}}}$$ is

WB JEE 2010
10

The value of $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + 5{x^2}} \over {1 + 3{x^2}}}} \right)^{{1 \over {{x^2}}}}}$$ is

WB JEE 2010
11

If $$f(5) = 7$$ and $$f'(5) = 7$$, then $$\mathop {\lim }\limits_{x \to 5} {{x\,f(5) - 5f(x)} \over {x - 5}}$$ is given by

WB JEE 2010
12

If $$y = (1 + x)(1 + {x^2})(1 + {x^4})\,.....\,(1 + {x^{2n}})$$, then the value of $${\left( {{{dy} \over {dx}}} \right)_{x = 0}}$$ is

WB JEE 2010
13

The value of f(0) so that the function $$f(x) = {{1 - \cos (1 - \cos x)} \over {{x^4}}}$$ is continuous everywhere is

WB JEE 2010
14
$$\mathop {\lim }\limits_{x \to 0} {{\sin |x|} \over x}$$ is equal to
WB JEE 2010
15

In which of the following functions, Rolle's theorem is applicable?

WB JEE 2010
16

The value of $$\mathop {\lim }\limits_{x \to 1} {{x + {x^2} + ..... + {x^n} - n} \over {x - 1}}$$ is

WB JEE 2011
17

$$\mathop {\lim }\limits_{x \to 0} {{\sin (\pi {{\sin }^2}x)} \over {{x^2}}} = $$

WB JEE 2011
18

If the function $$f(x) = \left\{ {\matrix{ {{{{x^2} - (A + 2)x + A} \over {x - 2}},} & {for\,x \ne 2} \cr {2,} & {for\,x = 2} \cr } } \right.$$ is continuous at x = 2, then

WB JEE 2011
19

$$f(x) = \left\{ {\matrix{ {[x] + [ - x],} & {when\,x \ne 2} \cr {\lambda ,} & {when\,x = 0} \cr } } \right.$$

If f(x) is continuous at x = 2, the value of $$\lambda$$ will be

WB JEE 2011
20

For the function $$f(x) = {e^{\cos x}}$$, Rolle's theorem is

WB JEE 2011
21

$$f(x) = \left\{ {\matrix{ {0,} & {x = 0} \cr {x - 3,} & {x > 0} \cr } } \right.$$

The function f(x) is

WB JEE 2011
22

The function f(x) = ax + b is strictly increasing for all real x if

WB JEE 2011
23

$$ \text { Let } f(x)=\left|\begin{array}{ccc} \cos x & x & 1 \\ 2 \sin x & x^3 & 2 x \\ \tan x & x & 1 \end{array}\right| \text {, then } \lim _\limits{x \rightarrow 0} \frac{f(x)}{x^2}= $$

WB JEE 2024
24

If $$\alpha, \beta$$ are the roots of the equation $$a x^2+b x+c=0$$ then $$\lim _\limits{x \rightarrow \beta} \frac{1-\cos \left(a x^2+b x+c\right)}{(x-\beta)^2}$$ is

WB JEE 2024
25

$$\mathop {\lim }\limits_{x \to \infty } \left\{ {x - \root n \of {(x - {a_1})(x - {a_2})\,...\,(x - {a_n})} } \right\}$$ where $${a_1},{a_2},\,...,\,{a_n}$$ are positive rational numbers. The limit

WB JEE 2023
26

Let $$f:[1,3] \to R$$ be continuous and be derivable in (1, 3) and $$f'(x) = {[f(x)]^2} + 4\forall x \in (1,3)$$. Then

WB JEE 2023
27

f(x) is a differentiable function and given $$f'(2) = 6$$ and $$f'(1) = 4$$, then $$L = \mathop {\lim }\limits_{h \to 0} {{f(2 + 2h + {h^2}) - f(2)} \over {f(1 + h - {h^2}) - f(1)}}$$

WB JEE 2023
28

Let $$f(x) = \left\{ {\matrix{ {x + 1,} & { - 1 \le x \le 0} \cr { - x,} & {0 < x \le 1} \cr } } \right.$$

WB JEE 2023
29

Let $$f(x) = [{x^2}]\sin \pi x,x > 0$$. Then

WB JEE 2023
30

The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {\left( {{1 \over {2\,.\,3}} + {1 \over {{2^2}\,.\,3}}} \right) + \left( {{1 \over {{2^2}\,.\,{3^2}}} + {1 \over {{2^3}\,.\,{3^2}}}} \right)\, + \,...\, + \,\left( {{2 \over {{2^n}\,.\,{3^n}}} + {1 \over {{2^{n + 1}}\,.\,3n}}} \right)} \right]$$ is

WB JEE 2023
31

The values of a, b, c for which the function $$f(x) = \left\{ \matrix{ {{\sin (a + 1)x + \sin x} \over x},x < 0 \hfill \cr c,x = 0 \hfill \cr {{{{(x + b{x^2})}^{{1 \over 2}}} - {x^{{1 \over 2}}}} \over {b{x^{{1 \over 2}}}}},x > 0 \hfill \cr} \right.$$ is continuous at x = 0, are

WB JEE 2022
32

Let $$f(x) = {a_0} + {a_1}|x| + {a_2}|x{|^2} + {a_3}|x{|^3}$$, where $${a_0},{a_1},{a_2},{a_3}$$ are real constants. Then f(x) is differentiable at x = 0

WB JEE 2022
33

$$\mathop {\lim }\limits_{x \to 0} \left( {{1 \over x}\ln \sqrt {{{1 + x} \over {1 - x}}} } \right)$$ is

WB JEE 2022
34

Let f : [a, b] $$\to$$ R be continuous in [a, b], differentiable in (a, b) and f(a) = 0 = f(b). Then

WB JEE 2022
35

$$\mathop {\lim }\limits_{x \to \infty } \left( {{{{x^2} + 1} \over {x + 1}} - ax - b} \right),(a,b \in R)$$ = 0. Then

WB JEE 2022
36
If $$I = \mathop {\lim }\limits_{x \to 0} sin\left( {{{{e^x} - x - 1 - {{{x^2}} \over 2}} \over {{x^2}}}} \right)$$, then limit
WB JEE 2021
37
Let $${S_n} = {\cot ^{ - 1}}2 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 + {\cot ^{ - 1}}32 + ....$$ to nth term. Then $$\mathop {\lim }\limits_{n \to \infty } {S_n}$$ is
WB JEE 2021
38
Let f : D $$\to$$ R where D = [$$-$$0, 1] $$\cup$$ [2, 4] be defined by

$$f(x) = \left\{ {\matrix{ {x,} & {if} & {x \in [0,1]} \cr {4 - x,} & {if} & {x \in [2,4]} \cr } } \right.$$ Then,
WB JEE 2021
39
The $$\mathop {\lim }\limits_{x \to \infty } {\left( {{{3x - 1} \over {3x + 1}}} \right)^{4x}}$$ equals
WB JEE 2021
40
Let $$\phi (x) = f(x) + f(1 - x)$$ and $$f(x) < 0$$ in [0, 1], then
WB JEE 2020
41
If $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + cx} \over {1 - cx}}} \right)^{{1 \over x}}} = 4$$, then $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + 2cx} \over {1 - 2cx}}} \right)^{{1 \over x}}}$$ is
WB JEE 2020
42
Let f : R $$ \to $$ R be twice continuously differentiable (or f" exists and is continuous) such that f(0) = f(1) = f'(0) = 0. Then
WB JEE 2020
43
Let $$0 < \alpha < \beta < 1$$. Then, $$\mathop {\lim }\limits_{n \to \infty } \int\limits_{1/(k + \beta )}^{1/(k + \alpha )} {{{dx} \over {1 + x}}} $$ is
WB JEE 2020
44
$$\mathop {\lim }\limits_{x \to 1} \left( {{1 \over {1nx}} - {1 \over {(x - 1)}}} \right)$$
WB JEE 2020
45
$$\mathop {\lim }\limits_{x \to {0^ + }} ({x^n}\ln x),\,n > 0$$
WB JEE 2019
46
The limit of the interior angle of a regular polygon of n sides as n $$ \to $$ $$\infty $$ is
WB JEE 2019
47
$$\mathop {\lim }\limits_{x \to {0^ + }} {({e^x} + x)^{1/x}}$$
WB JEE 2019
48
Let $$a = \min \{ {x^2} + 2x + 3:x \in R\} $$ and $$b = \mathop {\lim }\limits_{\theta \to 0} {{1 - \cos \theta } \over {{\theta ^2}}}$$. Then $$\sum\limits_{r = 0}^n {{a^r}{b^{n - r}}} $$ is
WB JEE 2019
49
A particle starts at the origin and moves 1 unit horizontally to the right and reaches P1, then it moves $${1 \over 2}$$ unit vertically up and reaches P2, then it moves $${1 \over 4}$$ unit horizontally to right and reaches P3, then it moves $${1 \over 8}$$ unit vertically down and reaches P4, then it moves $${1 \over 16}$$ unit horizontally to right and reaches P5 and so on. Let Pn = (xn, yn) and $$\mathop {\lim }\limits_{n \to \infty } {x_n} = \alpha $$ and $$\mathop {\lim }\limits_{n \to \infty } {y_n} = \beta $$. Then, ($$\alpha$$, $$\beta$$) is
WB JEE 2019
50
The value of $$\mathop {\lim }\limits_{x \to {0^ + }} {x \over p}\left[ {{q \over x}} \right]$$ is
WB JEE 2019
51
Let f : [a, b] $$ \to $$ R be differentiable on [a, b] and k $$ \in $$ R. Let f(a) = 0 = f(b). Also let J(x) = f'(x) + kf(x). Then
WB JEE 2018
52
Let $$f(x) = 3{x^{10}} - 7{x^8} + 5{x^6} - 21{x^3} + 3{x^2} - 7$$.

Then $$\mathop {\lim }\limits_{h \to 0} {{f(1 - h) - f(1)} \over {{h^3} + 3h}}$$
WB JEE 2018
53
Let f : [a, b] $$ \to $$ R be such that f is differentiable in (a, b), f is continuous at x = a and x = b and moreover f(a) = 0 = f(b). Then
WB JEE 2018
54
Let f : R $$ \to $$ R be a twice continuously differentiable function such that f(0) = f(1) = f'(0) = 0. Then
WB JEE 2018
55
Let $$f(x) = \left\{ {\matrix{ { - 2\sin x,} & {if\,x \le - {\pi \over 2}} \cr {A\sin x + B,} & {if\, - {\pi \over 2} < x < {\pi \over 2}} \cr {\cos x} & {if\,x \ge {\pi \over 2}} \cr } } \right.$$. Then,
WB JEE 2018
56
Consider the non-constant differentiable function f one one variable which obeys the relation $${{f(x)} \over {f(y)}} = f(x - y)$$. If f' (0) = p and f' (5) = q, then f' ($$-$$5) is
WB JEE 2017
57
If f'' (0) = k, k $$ \ne $$ 0, then the value of

$$\mathop {\lim }\limits_{x \to 0} {{2f(x) - 3f(2x) + f(4x)} \over {{x^2}}}$$ is
WB JEE 2017
58
Let $$f(x) = \left\{ {\matrix{ {{{{x^p}} \over {{{(\sin x)}^q}}},} & {if\,0 < x \le {\pi \over 2}} \cr {0,} & {if\,x = 0} \cr } } \right.$$, $$(p,q \in R)$$. Then, Lagrange's mean value theorem is applicable to f(x) in closed interval [0, x]
WB JEE 2017
59
$$\mathop {\lim }\limits_{x \to 0} {(\sin x)^{2\tan x}}$$ is equal to
WB JEE 2017
60
Let for all x > 0, $$f(x) = \mathop {\lim }\limits_{n \to \infty } n({x^{1/n}} - 1)$$, then
WB JEE 2017
61
If $$y = (1 + x)(1 + {x^2})(1 + {x^4})...(1 + {x^{2n}})$$, then the value of $$\left( {{{dy} \over {dx}}} \right)$$ at x = 0 is
WB JEE 2016
62
$$\mathop {\lim }\limits_{x \to 1} {\left( {{{1 + x} \over {2 + x}}} \right)^{{{(1 - \sqrt x )} \over {(1 - x)}}}}$$ is equal to
WB JEE 2016
63
The value of

$$\mathop {\lim }\limits_{n \to \infty } \left\{ {{{\sqrt {n + 1} + \sqrt {n + 2} + ... + \sqrt {2n - 1} } \over {{n^{3/2}}}}} \right\}$$ is
WB JEE 2016

Subjective

MCQ (More than One Correct Answer)

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12