WB JEE
Mathematics
Limits, Continuity and Differentiability
Previous Years Questions

MCQ (Single Correct Answer)

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{{a^{\cot x}} - {a^{\cos x}}} \over {\cot x - \cos x}},a > 0$$
Rolle's theorem is not applicable to the function $$f(x) = |x|$$ for $$ - 2 \le x \le 2$$ because
The value of the limit $$\mathop {\lim }\limits_{x \to 2} {{{e^{3x - 6}} - 1} \over {\sin (2 - x)}}$$ is
The $$\mathop {\lim }\limits_{x \to 2} {5 \over {\sqrt 2 - \sqrt x }}$$ is
A function f(x) is defined as follows for real x $$f(x) = \left\{ {\matrix{ {1 - {x^2}} & , & {for\,x 1} \cr } } \right.$$ Then...
Let $$f(x) = {{\sqrt {x + 3} } \over {x + 1}}$$, then the value of $$\mathop {\lim }\limits_{x \to - 3 - 0} f(x)$$ is
$$f(x) = x + |x|$$ is continuous for
The value of $$\mathop {\lim }\limits_{x \to 1} {{\sin ({e^{x - 1}} - 1)} \over {\log x}}$$ is
The value of $$\mathop {\lim }\limits_{x \to 0} {{{{\sin }^2}x + \cos x - 1} \over {{x^2}}}$$ is
The value of $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + 5{x^2}} \over {1 + 3{x^2}}}} \right)^{{1 \over {{x^2}}}}}$$ is
If $$f(5) = 7$$ and $$f'(5) = 7$$, then $$\mathop {\lim }\limits_{x \to 5} {{x\,f(5) - 5f(x)} \over {x - 5}}$$ is given by
If $$y = (1 + x)(1 + {x^2})(1 + {x^4})\,.....\,(1 + {x^{2n}})$$, then the value of $${\left( {{{dy} \over {dx}}} \right)_{x = 0}}$$ is
The value of f(0) so that the function $$f(x) = {{1 - \cos (1 - \cos x)} \over {{x^4}}}$$ is continuous everywhere is
$$\mathop {\lim }\limits_{x \to 0} {{\sin |x|} \over x}$$ is equal to
In which of the following functions, Rolle's theorem is applicable?
The value of $$\mathop {\lim }\limits_{x \to 1} {{x + {x^2} + ..... + {x^n} - n} \over {x - 1}}$$ is
$$\mathop {\lim }\limits_{x \to 0} {{\sin (\pi {{\sin }^2}x)} \over {{x^2}}} = $$
If the function $$f(x) = \left\{ {\matrix{ {{{{x^2} - (A + 2)x + A} \over {x - 2}},} & {for\,x \ne 2} \cr {2,} & {for\,x = 2} \cr } } \rig...
$$f(x) = \left\{ {\matrix{ {[x] + [ - x],} & {when\,x \ne 2} \cr {\lambda ,} & {when\,x = 0} \cr } } \right.$$ If f(x) is continuous at x ...
For the function $$f(x) = {e^{\cos x}}$$, Rolle's theorem is
$$f(x) = \left\{ {\matrix{ {0,} & {x = 0} \cr {x - 3,} & {x > 0} \cr } } \right.$$ The function f(x) is
The function f(x) = ax + b is strictly increasing for all real x if
$$\mathop {\lim }\limits_{x \to \infty } \left\{ {x - \root n \of {(x - {a_1})(x - {a_2})\,...\,(x - {a_n})} } \right\}$$ where $${a_1},{a_2},\,...,\,...
Let $$f:[1,3] \to R$$ be continuous and be derivable in (1, 3) and $$f'(x) = {[f(x)]^2} + 4\forall x \in (1,3)$$. Then
f(x) is a differentiable function and given $$f'(2) = 6$$ and $$f'(1) = 4$$, then $$L = \mathop {\lim }\limits_{h \to 0} {{f(2 + 2h + {h^2}) - f(2)} \...
Let $$f(x) = \left\{ {\matrix{ {x + 1,} & { - 1 \le x \le 0} \cr { - x,} & {0
Let $$f(x) = [{x^2}]\sin \pi x,x > 0$$. Then
The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {\left( {{1 \over {2\,.\,3}} + {1 \over {{2^2}\,.\,3}}} \right) + \left( {{1 \over {{2^2}...
The values of a, b, c for which the function $$f(x) = \left\{ \matrix{ {{\sin (a + 1)x + \sin x} \over x},x 0 \hfill \cr} \right.$$ is continuous ...
Let $$f(x) = {a_0} + {a_1}|x| + {a_2}|x{|^2} + {a_3}|x{|^3}$$, where $${a_0},{a_1},{a_2},{a_3}$$ are real constants. Then f(x) is differentiable at x ...
$$\mathop {\lim }\limits_{x \to 0} \left( {{1 \over x}\ln \sqrt {{{1 + x} \over {1 - x}}} } \right)$$ is
Let f : [a, b] $$\to$$ R be continuous in [a, b], differentiable in (a, b) and f(a) = 0 = f(b). Then
$$\mathop {\lim }\limits_{x \to \infty } \left( {{{{x^2} + 1} \over {x + 1}} - ax - b} \right),(a,b \in R)$$ = 0. Then
If $$I = \mathop {\lim }\limits_{x \to 0} sin\left( {{{{e^x} - x - 1 - {{{x^2}} \over 2}} \over {{x^2}}}} \right)$$, then limit
Let $${S_n} = {\cot ^{ - 1}}2 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 + {\cot ^{ - 1}}32 + ....$$ to nth term. Then $$\mathop {\lim }\limits_{n \to \inft...
Let f : D $$\to$$ R where D = [$$-$$0, 1] $$\cup$$ [2, 4] be defined by $$f(x) = \left\{ {\matrix{ {x,} & {if} & {x \in [0,1]} \cr {4 - x,} & ...
The $$\mathop {\lim }\limits_{x \to \infty } {\left( {{{3x - 1} \over {3x + 1}}} \right)^{4x}}$$ equals
Let $$\phi (x) = f(x) + f(1 - x)$$ and $$f(x) < 0$$ in [0, 1], then
If $$\mathop {\lim }\limits_{x \to 0} {\left( {{{1 + cx} \over {1 - cx}}} \right)^{{1 \over x}}} = 4$$, then $$\mathop {\lim }\limits_{x \to 0} {\left...
Let f : R $$ \to $$ R be twice continuously differentiable (or f" exists and is continuous) such that f(0) = f(1) = f'(0) = 0. Then
Let $$0 < \alpha < \beta < 1$$. Then, $$\mathop {\lim }\limits_{n \to \infty } \int\limits_{1/(k + \beta )}^{1/(k + \alpha )} {{{dx} \over ...
$$\mathop {\lim }\limits_{x \to 1} \left( {{1 \over {1nx}} - {1 \over {(x - 1)}}} \right)$$
$$\mathop {\lim }\limits_{x \to {0^ + }} ({x^n}\ln x),\,n > 0$$
The limit of the interior angle of a regular polygon of n sides as n $$ \to $$ $$\infty $$ is
$$\mathop {\lim }\limits_{x \to {0^ + }} {({e^x} + x)^{1/x}}$$
Let $$a = \min \{ {x^2} + 2x + 3:x \in R\} $$ and $$b = \mathop {\lim }\limits_{\theta \to 0} {{1 - \cos \theta } \over {{\theta ^2}}}$$. Then $$\sum...
A particle starts at the origin and moves 1 unit horizontally to the right and reaches P1, then it moves $${1 \over 2}$$ unit vertically up and reache...
The value of $$\mathop {\lim }\limits_{x \to {0^ + }} {x \over p}\left[ {{q \over x}} \right]$$ is
Let f : [a, b] $$ \to $$ R be differentiable on [a, b] and k $$ \in $$ R. Let f(a) = 0 = f(b). Also let J(x) = f'(x) + kf(x). Then
Let $$f(x) = 3{x^{10}} - 7{x^8} + 5{x^6} - 21{x^3} + 3{x^2} - 7$$. Then $$\mathop {\lim }\limits_{h \to 0} {{f(1 - h) - f(1)} \over {{h^3} + 3h}}$$...
Let f : [a, b] $$ \to $$ R be such that f is differentiable in (a, b), f is continuous at x = a and x = b and moreover f(a) = 0 = f(b). Then
Let f : R $$ \to $$ R be a twice continuously differentiable function such that f(0) = f(1) = f'(0) = 0. Then
Let $$f(x) = \left\{ {\matrix{ { - 2\sin x,} & {if\,x \le - {\pi \over 2}} \cr {A\sin x + B,} & {if\, - {\pi \over 2} < x < {...
Consider the non-constant differentiable function f one one variable which obeys the relation $${{f(x)} \over {f(y)}} = f(x - y)$$. If f' (0) = p and ...
If f'' (0) = k, k $$ \ne $$ 0, then the value of $$\mathop {\lim }\limits_{x \to 0} {{2f(x) - 3f(2x) + f(4x)} \over {{x^2}}}$$ is
Let $$f(x) = \left\{ {\matrix{ {{{{x^p}} \over {{{(\sin x)}^q}}},} & {if\,0 < x \le {\pi \over 2}} \cr {0,} & {if\,x = 0} \cr ...
$$\mathop {\lim }\limits_{x \to 0} {(\sin x)^{2\tan x}}$$ is equal to
Let for all x > 0, $$f(x) = \mathop {\lim }\limits_{n \to \infty } n({x^{1/n}} - 1)$$, then

Subjective

If N = n! (n $$\in$$ N, n > 2), then find $$\mathop {\lim }\limits_{N \to \infty } \left[ {{{({{\log }_2}N)}^{ - 1}} + {{({{\log }_3}N)}^{ - 1}} + \,\...
Use the formula $$\mathop {\lim }\limits_{x \to 0} {{{a^x} - 1} \over x} = {\log _e}a$$, to compute $$\mathop {\lim }\limits_{x \to 0} {{{2^x} - 1} \o...
If f(a) = 2, f'(a) = 1, g(a) = $$-$$1 and g'(a) = 2, find the value of $$\mathop {\lim }\limits_{x \to a} {{g(x)f(a) - g(a)f(x)} \over {x - a}}$$....

MCQ (More than One Correct Answer)

$$\mathop {\lim }\limits_{n \to \infty } \left\{ {{{\sqrt n } \over {\sqrt {{n^3}} }} + {{\sqrt n } \over {\sqrt {{{(n + 4)}^3}} }} + {{\sqrt n } \ove...
Let $$f(x) = {1 \over 3}x\sin x - (1 - \cos \,x)$$. The smallest positive integer k such that $$\mathop {\lim }\limits_{x \to 0} {{f(x)} \over {{x^k}}...
Let $$f:[1,3] \to R$$ be a continuous function that is differentiable in (1, 3) an f'(x) = | f(x) |2 + 4 for all x$$ \in $$ (1, 3). Then,...
Consider the function $$f(x) = {{{x^3}} \over 4} - \sin \pi x + 3$$
Let f : R $$ \to $$ R be twice continuously differentiable. Let f(0) = f(1) = f'(0) = 0. Then,
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12