## MCQ (Single Correct Answer)

The equation $$\sqrt 3 \sin x + \cos x = 4$$ has

If $$\tan \left( {{{\alpha \pi } \over 4}} \right) = \cot \left( {{{\beta \pi } \over 4}} \right)$$ then

The principal value of $${\sin ^{ - 1}}\tan \left( { - {{5\pi } \over 4}} \right)$$ is

The value of $$\cos {\pi \over {15}}\cos {{2\pi } \over {15}}\cos {{4\pi } \over {15}}\cos {{8\pi } \over {15}}$$ is

The equation $$\sqrt 3 \sin x + \cos x = 4$$ has

The value of $$\cos 15^\circ \cos 7{1 \over 2}^\circ \sin 7{1 \over 2}^\circ $$ is

General solution of $$\sin x + \cos x = \mathop {\min }\limits_{a \in IR} \{ 1,{a^2} - 4a + 6\} $$ is

The value of $$\left( {1 + \cos {\pi \over 6}} \right)\left( {1 + \cos {\pi \over 3}} \right)\left( {1 + \cos {{2\pi } \over 3}} \right)\left( {1 + ...

$$P = {1 \over 2}{\sin ^2}\theta + {1 \over 3}{\cos ^2}\theta $$, then

A positive acute angle is divided into two parts whose tangents are 1/2 and 1/3. Then the angle is

The smallest value of $$5\cos \theta + 12$$ is

In triangle ABC, a = 2, b = 3 and sin A = 2/3, thne B is equal to

Simplest form of $${2 \over {\sqrt {2 + \sqrt {2 + \sqrt {2 + 2\cos 4x} } } }}$$ is

If $$5\cos 2\theta + 2{\cos ^2}\theta /2 + 1 = 0$$, when $$(0

The value of $${{\sin 55^\circ - \cos 55^\circ } \over {\sin 10^\circ }}$$ is

The value of $${{\cot x - \tan x} \over {\cot 2x}}$$ is

The number of points of intersection of 2y = 1 and y = sinx, in $$-$$2$$\pi$$ $$\le$$ x $$\le$$ 2$$\pi$$ is

The value of $${{\cot 54^\circ } \over {\tan 36^\circ }} + {{\tan 20^\circ } \over {\cot 70^\circ }}$$ is

If $$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0$$, then the general value of $$\theta$$ is

If $$\sin \theta = {{2t} \over {1 + {t^2}}}$$ and $$\theta$$ lies in the second quadrant, then cos $$\theta$$ is equal to

The number of solutions of $$2\sin x + \cos x = 3$$ is

Let $$\tan \alpha = {a \over {a + 1}}$$ and $$\tan \beta = {1 \over {2a + 1}}$$ then $$\alpha + \beta $$ is

If $$\theta$$ + $$\phi$$ = $$\pi$$/4, then (1 + tan $$\theta$$) (1 + tan $$\phi$$) is equal to

If $$\sin \theta + \cos \theta = 0$$ and $$0

The value of cos 15$$^\circ$$ $$-$$ sin 15$$^\circ$$ is

If $$(\cot {\alpha _1})(\cot {\alpha _2})\,......\,(\cot {\alpha _n}) = 1,0 ...

The equation 6x + 8x = 10x has

$$\cos (2x + 7) = a(2 - \sin x)$$ can have a real solution for

Let f(x) = sin x + cos ax be periodic function. Then,

If $${e^{\sin x}} - {e^{-\sin x}} - 4 = 0$$, then the number of real values of x is

The graphs of the polynomial x2 $$-$$ 1 and cos x intersect

The approximate value of sin31$$^\circ$$ is

If sin6$$\theta$$ + sin4$$\theta$$ + sin2$$\theta$$ = 0, then general value of $$\theta$$ is

The equation $$\sin x(\sin x + \cos x) = k$$ has real solutions, where k is a real number. Then,

## Subjective

Find the general solution of $$\sec \theta + 1 = (2 + \sqrt 3 )\tan \theta $$.

Show that $${{\sin \theta } \over {\cos 3\theta }} + {{\sin 3\theta } \over {\cos 9\theta }} + {{\sin 9\theta } \over {\cos 27\theta }} = {1 \over 2}(...

Prov that the equation $$\cos 2x + a\sin x = 2a - 7$$ possesses a solution if 2 $$\le$$ a $$\le$$ 6.

Find the values of x, ($$-$$ $$\pi$$, ...