# Binomial Theorem · Mathematics · WB JEE

Start Practice

WB JEE 2008
If the magnitude of the coefficient of x7 in the expansion of $${\left( {a{x^2} + {1 \over {bx}}} \right)^8}$$, where a, b are positive numbers, is eq...
WB JEE 2008
If $${}^{16}{C_r} = {}^{16}{C_{r + 1}}$$, then the value of $${}^r{P_{r - 3}}$$ is
WB JEE 2008
The coefficient of x$$-$$10 in $${\left( {{x^2} - {1 \over {{x^3}}}} \right)^{10}}$$ is
WB JEE 2009
If C0, C1, C2, ......, Cn denote the coefficients in the expansion of (1 + x)n then the value of C1 + 2C2 + 3C3 + ..... + nCn is...
WB JEE 2009
If the coefficients of x2 and x3 in the expansion of (3 + ax)9 be same, then the value of a is
WB JEE 2009
using binomial theorem, the value of (0.999)3 correct to 3 decimal places is
WB JEE 2010
$$({2^{3n}} - 1)$$ will be divisible by $$(\forall n \in N)$$
WB JEE 2010
If in the expansion (a $$-$$ 2b)n, the sum of the 5th and 6th term is zero, then the value of $${a \over b}$$ is...
WB JEE 2010
Sum of the last 30 coefficients in the expansion of (1 + x)59, when expanded in ascending powers of x is
WB JEE 2010
If $${(1 - x + {x^2})^n} = {a_0} + {a_1}x + {a_2}{x^2} + \,\,....\,\,{a_{2n}}{x^{2n}}$$, then the value of $${a_0} + {a_2} + {a_4} + \,\,....\,\,{a_{2... WB JEE 2011 The coefficient of xn om the expansion of$${{{e^{7x}} + {e^x}} \over {{e^{3x}}}}$$is WB JEE 2011 If A and B are coefficients of xn in the expansions of (1 + x)2n and (1 + x)2n$$-$$1 respectively, then A/B is equal to... WB JEE 2011 If n > 1 is an integer and x$$\ne$$0, then (1 + x)n$$-$$nx$$-$$1 is divisible by WB JEE 2024 If$$\left(1+x+x^2+x^3\right)^5=\sum_\limits{k=0}^{15} a_k x^k$$then$$\sum_\limits{k=0}^7(-1)^{\mathbf{k}} \cdot a_{2 k}$$is equal to WB JEE 2024 The coefficient of$$a^{10} b^7 c^3$$in the expansion of$$(b c+c a+a b)^{10}$$is WB JEE 2022 The number of zeros at the end of$$\left| \!{\underline {\, {100} \,}} \right. $$is WB JEE 2021 For x$$\in$$R, x$$\ne-$$1, if$${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ..... + {x^{2016}} = \sum\limits_{i = 0}^{2016} {...
WB JEE 2021
The coefficient of a3b4c5 in the expansion of (bc + ca + ab)6 is
WB JEE 2020
EXAM MAP
Medical
NEET