Hyperbola · Mathematics · WB JEE
MCQ (Single Correct Answer)
If t is a parameter, then $$x = a\left( {t + {1 \over t}} \right)$$, $$y = b\left( {t - {1 \over t}} \right)$$ represents
If the line ax + by + c = 0 is a tangent to the curve xy = 4, then
For different values of $$\alpha$$, the locus of the point of intersection of the two straight lines $$\sqrt 3 x - y - 4\sqrt 3 \alpha = 0$$ and $$\sqrt 3 \alpha x + \alpha y - 4\sqrt 3 = 0$$ is
The eccentricity of the hyperbola $$4{x^2} - 9{y^2} = 36$$ is
In a plane $$\vec{a}$$ and $$\vec{b}$$ are the position vectors of two points A and B respectively. A point $P$ with position vector $$\overrightarrow{\mathrm{r}}$$ moves on that plane in such a way that $$|\overrightarrow{\vec{r}}-\vec{a}| \sim|\vec{r}-\vec{b}|=c$$ (real constant). The locus of P is a conic section whose eccentricity is
The locus of the midpoint of the system of parallel chords parallel to the line $$y=2 x$$ to the hyperbola $$9 x^2-4 y^2=36$$ is
If a hyperbola passes through the point P($$\sqrt2$$, $$\sqrt3$$) and has foci at ($$\pm$$ 2, 0), then the tangent to this hyperbola at P is
The average length of all vertical chords of the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1,a \le x \le 2a$$, is :
Let $$A(2\sec \theta ,3\tan \theta )$$ and $$B(2\sec \phi ,3\tan \phi )$$ where $$\theta + \phi = {\pi \over 2}$$ be two points on the hyperbola $${{{x^2}} \over 4} - {{{y^2}} \over 9} = 1$$. If ($$\alpha,\beta$$) is the point of intersection of normals to the hyperbola at A and B, then $$\beta$$ is equal to
Let $$P(3\sec \theta ,2\tan \theta )$$ and $$Q(3\sec \phi ,2\tan \phi )$$ be two points on $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1$$ such that $$\theta + \phi = {\pi \over 2},0 < \theta ,\phi < {\pi \over 2}$$. Then the ordinate of the point of intersection of the normals at P and Q is
PQ is a double ordinate of the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$ such that $$\Delta OPQ$$ is an equilateral triangle, O being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies
MCQ (More than One Correct Answer)
The line y = x + 5 touches