1
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let cos$$^{ - 1}\left( {{y \over b}} \right) = \log {\left( {{x \over n}} \right)^n}$$. Then
A
$${x^2}{y^2} + x{y_1} + {n^2}y = 0$$
B
$$x{y_{^2}} - x{y_1} + 2{n^2}y = 0$$
C
$${x^2}{y_{^2}} + 3x{y_1} - {n^2}y = 0$$
D
$$x{y_{^2}} + 5x{y_1} - 3y = 0$$

$$\left( {Here,\,{y_2} = {{{d^2}y} \over {d{x^2}}},\,{y_1} = {{dy} \over {dx}}} \right)$$
2
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let f be a differentiable function with $$\mathop {\lim }\limits_{x \to \infty } f(x) = 0.$$ If $$y' + yf'(x) - f(x)f'(x) = 0$$, $$\mathop {\lim }\limits_{x \to \infty } y(x) = 0$$, then (where $$y \equiv {{dy} \over {dx}})$$
A
$$y + 1 = {e^{f(x)}} + f(x)$$
B
$$y - 1 = {e^{f(x)}} + f(x)$$
C
$$y + 1 = {e^{ - f(x)}} + f(x)$$
D
$$y - 1 = {e^{ - f(x)}} + f(x)$$
3
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If $$x\sin \left( {{y \over x}} \right)dy = \left[ {y\sin \left( {{y \over x}} \right) - x} \right]dx,\,x > 0$$ and $$y(1) = {\pi \over 2}$$, then the value of $$\cos \left( {{y \over x}} \right)$$ is
A
1
B
log x
C
e
D
0
4
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
The differential equation of the family of curves y = ex (A cos x + B sin x) where, A, B are arbitrary constants is
A
$${{{d^2}y} \over {d{x^2}}} - 9x = 13$$
B
$${{{d^2}y} \over {d{x^2}}} - 2{{dy} \over {dx}} + 2y = 0$$
C
$${{{d^2}y} \over {d{x^2}}} + 3y = 4$$
D
$${\left( {{{dy} \over {dx}}} \right)^2} + {{dy} \over {dx}} - xy = 0$$
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12