Vector Algebra · Mathematics · WB JEE

Start Practice

MCQ (Single Correct Answer)

1

If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors and $\lambda$ is a real number then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+4 \vec{c}$ and $(2 \lambda-1) \vec{c}$ are non-coplanar for

WB JEE 2025
2

If ' $\theta$ ' is the angle between two vectors $\vec{a}$ and $\vec{b}$ such that $|\vec{a}|=7,|\vec{b}|=1$ and $|\vec{a} \times \vec{b}|^2=k^2-(\vec{a} \cdot \vec{b})^2$, then the values of $k$ and $\theta$ are

WB JEE 2025
3

Let $\vec{a}, \vec{b}$ and $\vec{c}$ be vectors of equal magnitude such that the angle between $\vec{a}$ and $\vec{b}$ is $\alpha, \vec{b}$ and $\vec{c}$ is $\beta$ and $\vec{c}$ and $\vec{a}$ is $\gamma$. Then the minimum value of $\cos \alpha+\cos \beta+\cos \gamma$ is

WB JEE 2025
4

If $\vec{\alpha}=3 \vec{i}-\vec{k},|\vec{\beta}|=\sqrt{5}$ and $\vec{\alpha} \cdot \vec{\beta}=3$, then the area of the parallelogram for which $\vec{\alpha}$ and $\vec{\beta}$ are adjacent sides is

WB JEE 2025
5

Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors. Suppose $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and the angle between $\vec{b}$ and $\vec{c}$ is $\frac{\pi}{6}$. Then $\vec{a}$ is

WB JEE 2025
6

A unit vector in XY-plane making an angle $$45^{\circ}$$ with $$\hat{i}+\hat{j}$$ and an angle $$60^{\circ}$$ with $$3 \hat{i}-4 \hat{j}$$ is

WB JEE 2024
7

The value of 'a' for which the scalar triple product formed by the vectors $$\overrightarrow \alpha = \widehat i + a\widehat j + \widehat k,\overrightarrow \beta = \widehat j + a\widehat k$$ and $$\overrightarrow \gamma = a\widehat i + \widehat k$$ is maximum, is

WB JEE 2023
8

If the volume of the parallelopiped with $$\overrightarrow a \times \overrightarrow b ,\overrightarrow b \times \overrightarrow c $$ and $$\overrightarrow c \times \overrightarrow a $$ as conterminous edges is 9 cu. units, then the volume of the parallelopiped with $$(\overrightarrow a \times \overrightarrow b ) \times (\overrightarrow b \times \overrightarrow c ),(\overrightarrow b \times \overrightarrow c ) \times (\overrightarrow c \times \overrightarrow a )$$, and $$(\overrightarrow c \times \overrightarrow a ) \times (\overrightarrow a \times \overrightarrow b )$$ as conterminous edges is

WB JEE 2023
9

If $$\overrightarrow a = \widehat i + \widehat j - \widehat k$$, $$\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow c $$ is unit vector perpendicular to $$\overrightarrow a $$ and coplanar with $$\overrightarrow a $$ and $$\overrightarrow b $$, then unit vector $$\overrightarrow d $$ perpendicular to both $$\overrightarrow a $$ and $$\overrightarrow c $$ is

WB JEE 2022
10

If $${\overrightarrow \alpha }$$ is a unit vector, $$\overrightarrow \beta = \widehat i + \widehat j - \widehat k$$, $$\overrightarrow \gamma = \widehat i + \widehat k$$ then the maximum value of $$\left[ {\overrightarrow \alpha \overrightarrow \beta \overrightarrow \gamma } \right]$$ is

WB JEE 2022
11
let $$\alpha$$, $$\beta$$, $$\gamma$$ be three non-zero vectors which are pairwise non-collinear. if $$\alpha$$ + 3$$\beta$$ is collinear with $$\gamma$$ and $$\beta$$ + 2$$\gamma$$ is collinear with $$\alpha$$ then $$\alpha$$ + 3$$\beta$$ + 6$$\gamma$$ is
WB JEE 2021
12
If a($$\alpha$$ $$\times$$ $$\beta$$) + b($$\beta$$ $$\times$$ $$\gamma$$) + c($$\gamma$$ + $$\alpha$$) = 0, where a, b, c are non-zero scalars, then the vectors $$\alpha$$, $$\beta$$, $$\gamma$$ are
WB JEE 2021
13
The unit vector in ZOX plane, making angles $$45^\circ $$ and $$60^\circ $$ respectively with $$\alpha = 2\widehat i + 2\widehat j - \widehat k$$ and $$\beta = \widehat j - \widehat k$$ is
WB JEE 2020
14
Let $$\widehat \alpha $$, $$\widehat \beta $$, $$\widehat \gamma $$ be three unit vectors such that $$\widehat \alpha \, \times \,(\widehat \beta \times \widehat \gamma ) = {1 \over 2}(\widehat \beta + \widehat \gamma )$$ where $$\widehat \alpha \, \times \,(\widehat \beta \times \widehat \gamma ) = $$$$(\widehat \alpha \,.\,\widehat \gamma )\widehat \beta - (\widehat \alpha \,.\,\widehat \beta )\widehat \gamma $$. If $$\widehat \beta $$ is not parallel to $$\widehat \gamma $$, then the angle between $$\widehat \alpha $$ and $$\widehat \beta $$ is
WB JEE 2019
15
The position vectors of the points A, B, C and D are $$3\widehat i - 2\widehat j - \widehat k$$, $$2\widehat i - 3\widehat j + 2\widehat k$$, $$5\widehat i - \widehat j + 2\widehat k$$ and $$4\widehat i - \widehat j - \lambda \widehat k$$, respectively. If the points A, B, C and D lie on a plane, the value of $$\lambda$$ is
WB JEE 2019
16
Let $$\overrightarrow \alpha $$ = $$\widehat i + \widehat j + \widehat k$$, $$\overrightarrow \beta $$ = $$\widehat i - \widehat j - \widehat k$$ and $${\overrightarrow \gamma }$$ = $$ - \widehat i - \widehat j - \widehat k$$ be three vectors. A vector $$\overrightarrow \delta $$, in the plane of $$\overrightarrow \alpha $$ and $$\overrightarrow \beta $$, whose projection on $${\overrightarrow \gamma }$$ is $${1 \over {\sqrt 3 }}$$, is given by
WB JEE 2018
17
Let $$\overrightarrow \alpha $$, $${\overrightarrow \beta }$$, $${\overrightarrow \gamma }$$ be the three unit vectors such that $$\overrightarrow \alpha .\overrightarrow \beta = \overrightarrow \alpha .\overrightarrow \gamma = 0$$ and the angle between $$\overrightarrow \beta $$ and $$\overrightarrow \gamma $$ is 30$$^\circ$$. Then $$\overrightarrow \alpha $$ is
WB JEE 2018
18
For any vector x, where $$\widehat i$$, $$\widehat j$$, $$\widehat k$$ have their usual meanings the value of $${(x \times \widehat i)^2} + {(x \times \widehat j)^2} + {(x \times \widehat k)^2}$$ where $$\widehat i$$, $$\widehat j$$, $$\widehat k$$ have their usual meanings, is equal to
WB JEE 2017
19
If the sum of two unit vectors is a unit vector, then the magnitude of their difference is
WB JEE 2017
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12