MCQ (Single Correct Answer)

1

$$\int\limits_{ - \pi /2}^{\pi /2} {{{\sin }^9}x{{\cos }^5}x\,dx} $$ equals

WB JEE 2008
2

If $$I = \int\limits_{ - \pi }^\pi {{{{e^{\sin x}}} \over {{e^{\sin x}} + {e^{ - \sin x}}}}dx} $$, then I equals

WB JEE 2008
3

If $$h(x) = \int\limits_0^x {{{\sin }^4}t\,dt} $$, then $$h(x + \pi )$$ equals

WB JEE 2008
4

The value of the integral $$\int\limits_0^2 {|{x^2} - 1|dx} $$ is

WB JEE 2008
5

The value of $$\int\limits_0^\pi {|\cos x|dx} $$ is

WB JEE 2008
6

The value of $$\int\limits_{ - 3}^3 {(a{x^5} + b{x^3} + cx + k)dx} $$, where a, b, c, k are constants, depends only on

WB JEE 2008
7

The value of the integral $$\int\limits_{ - a}^a {{{x{e^{{x^2}}}} \over {1 + {x^2}}}dx} $$ is

WB JEE 2008
8

The value of the $$\mathop {\lim }\limits_{n \to \infty } \left( {{1 \over {n + 1}} + {1 \over {n + 2}} + ... + {1 \over {6n}}} \right)$$ is

WB JEE 2008
9

If $$f(x) = f(a - x)$$, then $$\int\limits_0^a {xf(x)dx} $$ is equal to

WB JEE 2009
10

The value of $$\int\limits_0^\infty {{{dx} \over {({x^2} + 4)({x^2} + 9)}}} $$ is

WB JEE 2009
11

If $${I_1} = \int\limits_0^{\pi /4} {{{\sin }^2}xdx} $$ and $${I_2} = \int\limits_0^{\pi /4} {{{\cos }^2}xdx} $$, then

WB JEE 2009
12

$$\int\limits_{ - 1}^4 {f(x)dx = 4} $$ and $$\int\limits_2^4 {\{ 3 - f(x)\} dx = 7} $$, then the value of $$\int\limits_{ - 1}^2 {f(x)dx} $$ is

WB JEE 2009
13

$$\int\limits_0^{1000} {{e^{x - [x]}}dx} $$ is equal to

WB JEE 2009
14

The value of the integral $$\int\limits_0^{\pi /2} {{{\sin }^5}xdx} $$ is

WB JEE 2010
15

If $${d \over {dx}}\{ f(x)\} = g(x)$$, then $$\int\limits_a^b {f(x)g(x)dx} $$ is equal to

WB JEE 2010
16

If $${I_1} = \int\limits_0^{3\pi } {f({{\cos }^2}x)dx} $$ and $${I_2} = \int\limits_0^\pi {f({{\cos }^2}x)dx} $$, then

WB JEE 2010
17

The value of $$I = \int\limits_{ - \pi /2}^{\pi /2} {|\sin x|dx} $$ is

WB JEE 2010
18

If $$I = \int\limits_0^1 {{{dx} \over {1 + {x^{\pi /2}}}}} $$, then

WB JEE 2010
19

The value of $$\int\limits_{ - 2}^2 {(x\cos x + \sin x + 1)dx} $$ is

WB JEE 2011
20

$$\int\limits_\pi ^{16\pi } {|\sin x|dx = } $$

WB JEE 2011
21

The value of $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{{{r^3}} \over {{r^4} + {n^4}}}} $$ is

WB JEE 2011
22

The value of $$\int\limits_0^\pi {{{\sin }^{50}}x{{\cos }^{49}}x\,dx} $$ is

WB JEE 2011
23

The value of the integral $\int\limits_3^6 \frac{\sqrt{x}}{\sqrt{9-x}+\sqrt{x}} d x$ is

WB JEE 2025
24

$\int_\limits{-1}^1 \frac{x^3+|x|+1}{x^2+2|x|+1} d x$ is equal to

WB JEE 2025
25

$\int\limits_0^{1 \cdot 5}\left[x^2\right] d x$ is equal to

WB JEE 2025
26

The value of the integral $\int_0^{\pi / 2} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x$ is

WB JEE 2025
27

Let $f(x)=\max \{x+|x|, x-[x]\}$, where $[x]$ stands for the greatest integer not greater than $x$. Then $\int\limits_{-3}^3 f(x) d x$ has the value

WB JEE 2025
28

All values of a for which the inequality $$\frac{1}{\sqrt{a}} \int_\limits1^a\left(\frac{3}{2} \sqrt{x}+1-\frac{1}{\sqrt{x}}\right) \mathrm{d} x<4$$ is satisfied, lie in the interval

WB JEE 2024
29

For any integer $$\mathrm{n}, \int_\limits0^\pi \mathrm{e}^{\cos ^2 x} \cdot \cos ^3(2 n+1) x \mathrm{~d} x$$ has the value :

WB JEE 2024
30

If $$\mathrm{f}(x)=\frac{\mathrm{e}^x}{1+\mathrm{e}^x}, \mathrm{I}_1=\int_\limits{\mathrm{f}(-\mathrm{a})}^{\mathrm{f}(\mathrm{a})} x \mathrm{~g}(x(1-x)) \mathrm{d} x$$ and $$\mathrm{I}_2=\int_\limits{\mathrm{f}(-\mathrm{a})}^{\mathrm{f}(\mathrm{a})} \mathrm{g}(x(1-x)) \mathrm{d} x$$, then the value of $$\frac{I_2}{I_1}$$ is

WB JEE 2024
31

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function and $$f(1)=4$$. Then the value of $$\lim _\limits{x \rightarrow 1} \int_\limits4^{f(x)} \frac{2 t}{x-1} d t$$, if $$f^{\prime}(1)=2$$ is

WB JEE 2024
32

Let $$\mathrm{I}(\mathrm{R})=\int_\limits0^{\mathrm{R}} \mathrm{e}^{-\mathrm{R} \sin x} \mathrm{~d} x, \mathrm{R}>0$$. then,

WB JEE 2024
33

$$\lim _\limits{n \rightarrow \infty} \frac{1}{n^{k+1}}[2^k+4^k+6^k+\ldots .+(2 n)^k]=$$

WB JEE 2024
34

the expression $${{\int\limits_0^n {[x]dx} } \over {\int\limits_0^n {\{ x\} dx} }}$$, where $$[x]$$ and $$\{ x\} $$ are respectively integral and fractional part of $$x$$ and $$n \in N$$, is equal to

WB JEE 2023
35

The value $$\int\limits_0^{1/2} {{{dx} \over {\sqrt {1 - {x^{2n}}} }}} $$ is $$(n \in N)$$

WB JEE 2023
36

If $${I_n} = \int\limits_0^{{\pi \over 2}} {{{\cos }^n}x\cos nxdx} $$, then I$$_1$$, I$$_2$$, I$$_3$$ ... are in

WB JEE 2023
37

$$\int\limits_0^{2\pi } {\theta {{\sin }^6}\theta \cos \theta d\theta } $$ is equal to

WB JEE 2023
38

The average ordinate of $$y = \sin x$$ over $$[0,\pi ]$$ is :

WB JEE 2023
39

Let f be derivable in [0, 1], then

WB JEE 2022
40

The value of $$\int\limits_0^{{\pi \over 2}} {{{{{(\cos x)}^{\sin x}}} \over {{{(\cos x)}^{\sin x}} + {{(\sin x)}^{\cos x}}}}dx} $$ is

WB JEE 2022
41

Let $$\mathop {\lim }\limits_{ \in \to 0 + } \int\limits_ \in ^x {{{bt\cos 4t - a\sin 4t} \over {{t^2}}}dt = {{a\sin 4x} \over x} - 1,\left( {0 < x < {\pi \over 4}} \right)} $$. Then a and b are given by

WB JEE 2022
42

Let $$f(x) = \int\limits_{\sin x}^{\cos x} {{e^{ - {t^2}}}dt} $$. Then $$f'\left( {{\pi \over 4}} \right)$$ equals

WB JEE 2022
43

If I is the greatest of $${I_1} = \int\limits_0^1 {{e^{ - x}}{{\cos }^2}x\,dx} $$, $${I_2} = \int\limits_0^1 {{e^{ - {x^2}}}{{\cos }^2}x\,dx} $$, $${I_3} = \int\limits_0^1 {{e^{ - {x^2}}}dx} $$, $${I_4} = \int\limits_0^1 {{e^{ - {x^2}/2}}dx} $$, then

WB JEE 2022
44
$$\int\limits_1^3 {{{\left| {x - 1} \right|} \over {\left| {x - 2} \right| + \left| {x - 3} \right|}}dx} $$ is equal to
WB JEE 2021
45
The value of the integral $$\int\limits_{ - {1 \over 2}}^{{1 \over 2}} {{{\left\{ {{{\left( {{{x + 1} \over {x - 1}}} \right)}^2} + {{\left( {{{x - 1} \over {x + 1}}} \right)}^2} - 2} \right\}}^{1/2}}} dx$$ is equal to
WB JEE 2021
46
If $$\int\limits_{{{\log }_e}2}^x {{{({e^x} - 1)}^{ - 1}}dx = {{\log }_e}{3 \over 2}} $$, then the value of x is
WB JEE 2021
47
The value of $$\int\limits_0^5 {\max \{ {x^2},6x - 8\} \,dx} $$ is
WB JEE 2021
48
Let f(x) be continuous periodic function with period T. Let $$I = \int\limits_a^{a + T} {f(x)\,dx} $$. Then
WB JEE 2021
49
If $$b = \int\limits_0^1 {{{{e^t}} \over {t + 1}}dt} $$, then $$\int\limits_{a - 1}^a {{{{e^{ - t}}} \over {t - a - 1}}} $$ is
WB JEE 2021
50
Let $$I = \int_{\pi /4}^{\pi /3} {{{\sin x} \over x}dx} $$. Then
WB JEE 2021
51
The value of

$$\sum\limits_{n = 1}^{10} {} \int\limits_{ - 2n - 1}^{ - 2n} {{{\sin }^{27}}} x\,dx + \sum\limits_{n = 1}^{10} {} \int\limits_{2n}^{2n + 1} {{{\sin }^{27}}} x\,dx$$ is equal to
WB JEE 2020
52
$$\int\limits_0^2 {[{x^2}]} \,dx$$ is equal to
WB JEE 2020
53
Let f, be a continuous function in [0, 1], then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{j = 0}^n {{1 \over n}} f\left( {{j \over n}} \right)$$ is
WB JEE 2020
54
The value of the integration

$$\int\limits_{ - {\pi \over 4}}^{\pi /4} {\left( {\lambda |\sin x| + {{\mu \sin x} \over {1 + \cos x}} + \gamma } \right)} dx$$
WB JEE 2019
55
The value of $$\mathop {\lim }\limits_{x \to 0} {1 \over x}\left[ {\int\limits_y^a {{e^{{{\sin }^2}t}}dt - } \int\limits_{x + y}^a {{e^{{{\sin }^2}t}}dt} } \right]$$ is equal to
WB JEE 2019
56
The value of the integral $$\int\limits_{ - 1}^1 {\left\{ {{{{x^{2015}}} \over {{e^{|x|}}({x^2} + \cos x)}} + {1 \over {{e^{|x|}}}}} \right\}} dx$$ is equal to
WB JEE 2019
57
$$\mathop {\lim }\limits_{n \to \infty } {3 \over n}\left[ {1 + \sqrt {{n \over {n + 3}}} + \sqrt {{n \over {n + 6}}} + \sqrt {{n \over {n + 9}}} + ... + \sqrt {{n \over {n + 3(n - 1)}}} } \right]$$
WB JEE 2019
58
If $$M = \int\limits_0^{\pi /2} {{{\cos x} \over {x + 2}}dx} $$, $$N = \int\limits_0^{\pi /4} {{{\sin x\cos x} \over {{{(x + 1)}^2}}}dx} $$, then the value of M $$-$$ N is
WB JEE 2018
59
The value of the integral $$I = \int_{1/2014}^{2014} {{{{{\tan }^{ - 1}}x} \over x}} dx$$ is
WB JEE 2018
60
Let $$I = \int\limits_{\pi /4}^{\pi /3} {{{\sin x} \over x}} dx$$. Then
WB JEE 2018
61
The value of

$$I = \int_{\pi /2}^{5\pi /2} {{{{e^{{{\tan }^{ - 1}}(\sin x)}}} \over {{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}} dx$$, is
WB JEE 2018
62
The value of

$$\mathop {\lim }\limits_{n \to \infty } {1 \over n}\left\{ {{{\sec }^2}{\pi \over {4n}} + {{\sec }^2}{{2\pi } \over {4n}} + ... + {{\sec }^2}{{n\pi } \over {4n}}} \right\}$$ is
WB JEE 2018
63
Let $${I_1} = \int_0^n {[x]} \,dx$$ and $${I_2} = \int_0^n {\{ x\} } \,dx$$, where [x] and {x} are integral and fractional parts of x and n $$ \in $$ N $$-$$ {1}. Then I1 / I2 is equal to
WB JEE 2017
64
The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + ... + {1 \over {2n}}} \right]$$ is
WB JEE 2017
65
The value of the integral $$\int_0^1 {{e^{{x^2}}}} dx$$
WB JEE 2017
66
$$\int_0^{100} {{e^{x - [x]}}} dx$$ is equal to
WB JEE 2017
67
If $$f(x) = \int_{ - 1}^x {|t|} \,dt$$, then for any $$x \ge 0,\,f(x)$$ is equal to
WB JEE 2017
68
Let $$I = \int_0^{100\pi } {\sqrt {(1 - \cos 2x)} } \,dx$$, then
WB JEE 2017
69
$$\int\limits_0^1 {\log \left( {{1 \over x} - 1} \right)} dx$$ is equal to
WB JEE 2016
70
If [x] denotes the greatest integer less than or equal to x, then the value of the integral $$\int\limits_0^2 {{x^2}[x]\,dx} $$ equals
WB JEE 2016

Subjective

MCQ (More than One Correct Answer)

1

If $f(x)=\int_0^{\sin ^2 x} \sin ^{-1} \sqrt{t} d t$ and $g(x)=\int_0^{\cos ^2 x} \cos ^{-1} \sqrt{t} d t$, then the value of $f(x)+g(x)$ is

WB JEE 2025
2

The value of $\int\limits_{-100}^{100} \frac{\left(x+x^3+x^5\right)}{\left(1+x^2+x^4+x^6\right)} d x$ is

WB JEE 2025
3

$$ \text { The points of extremum of } \int_\limits0^{x^2} \frac{t^2-5 t+4}{2+e^t} d t \text { are } $$

WB JEE 2024
4

Let f be a non-negative function defined on $$\left[ {0,{\pi \over 2}} \right]$$. If $$\int\limits_0^x {(f'(t) - \sin 2t)dt = \int\limits_x^0 {f(t)\tan t\,dt} } ,f(0) = 1$$ then $$\int\limits_0^{{\pi \over 2}} {f(x)dx} $$ is

WB JEE 2023
5

Which of the following statements are true?

WB JEE 2023
6
Whichever of the following is/are correct?
WB JEE 2021
7
Let $$f(x) = \left\{ {\matrix{ {0,} & {if} & { - 1 \le x \le 0} \cr {1,} & {if} & {x = 0} \cr {2,} & {if} & {0 < x \le 1} \cr } } \right.$$ and let $$F(x) = \int\limits_{ - 1}^x {f(t)dt} $$, $$-$$1 $$\le$$ x $$\le$$ 1, then
WB JEE 2021
8
Let $${I_n} = \int\limits_0^1 {{x^n}} {\tan ^{ - 1}}xdx$$. If $${a_n}{I_{n + 2}} + {b_n}{I_n} = {c_n}$$ for all n $$ \ge $$ 1, then
WB JEE 2019
9
Let $$I = \int\limits_0^I {{{{x^3}\cos 3x} \over {2 + {x^2}}}dx} $$, then
WB JEE 2018
10
Let f be a non-constant continuous function for all x $$ \ge $$ 0. Let f satisfy the relation f(x) f(a $$-$$ x) = 1 for some a $$ \in $$ R+. Then, $$I = \int_0^a {{{dx} \over {1 + f(x)}}} $$ is equal to
WB JEE 2017
11
If $$\phi (t) = \left\{ \matrix{ 1,\,for\,0 \le t < 1, \hfill \cr 0,\,otherwise \hfill \cr} \right.$$, then $$\int\limits_{ - 300}^{3000} {\left( {\sum\limits_{r' = 2014}^{2016} {\phi (t - r')\phi (t - 2016)} } \right)} \,dt$$ is
WB JEE 2016
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12