MCQ (Single Correct Answer)

1

$$\int\limits_{ - \pi /2}^{\pi /2} {{{\sin }^9}x{{\cos }^5}x\,dx} $$ equals

WB JEE 2008
2

If $$I = \int\limits_{ - \pi }^\pi {{{{e^{\sin x}}} \over {{e^{\sin x}} + {e^{ - \sin x}}}}dx} $$, then I equals

WB JEE 2008
3

If $$h(x) = \int\limits_0^x {{{\sin }^4}t\,dt} $$, then $$h(x + \pi )$$ equals

WB JEE 2008
4

The value of the integral $$\int\limits_0^2 {|{x^2} - 1|dx} $$ is

WB JEE 2008
5

The value of $$\int\limits_0^\pi {|\cos x|dx} $$ is

WB JEE 2008
6

The value of $$\int\limits_{ - 3}^3 {(a{x^5} + b{x^3} + cx + k)dx} $$, where a, b, c, k are constants, depends only on

WB JEE 2008
7

The value of the integral $$\int\limits_{ - a}^a {{{x{e^{{x^2}}}} \over {1 + {x^2}}}dx} $$ is

WB JEE 2008
8

The value of the $$\mathop {\lim }\limits_{n \to \infty } \left( {{1 \over {n + 1}} + {1 \over {n + 2}} + ... + {1 \over {6n}}} \right)$$ is

WB JEE 2008
9

If $$f(x) = f(a - x)$$, then $$\int\limits_0^a {xf(x)dx} $$ is equal to

WB JEE 2009
10

The value of $$\int\limits_0^\infty {{{dx} \over {({x^2} + 4)({x^2} + 9)}}} $$ is

WB JEE 2009
11

If $${I_1} = \int\limits_0^{\pi /4} {{{\sin }^2}xdx} $$ and $${I_2} = \int\limits_0^{\pi /4} {{{\cos }^2}xdx} $$, then

WB JEE 2009
12

$$\int\limits_{ - 1}^4 {f(x)dx = 4} $$ and $$\int\limits_2^4 {\{ 3 - f(x)\} dx = 7} $$, then the value of $$\int\limits_{ - 1}^2 {f(x)dx} $$ is

WB JEE 2009
13

$$\int\limits_0^{1000} {{e^{x - [x]}}dx} $$ is equal to

WB JEE 2009
14

The value of the integral $$\int\limits_0^{\pi /2} {{{\sin }^5}xdx} $$ is

WB JEE 2010
15

If $${d \over {dx}}\{ f(x)\} = g(x)$$, then $$\int\limits_a^b {f(x)g(x)dx} $$ is equal to

WB JEE 2010
16

If $${I_1} = \int\limits_0^{3\pi } {f({{\cos }^2}x)dx} $$ and $${I_2} = \int\limits_0^\pi {f({{\cos }^2}x)dx} $$, then

WB JEE 2010
17

The value of $$I = \int\limits_{ - \pi /2}^{\pi /2} {|\sin x|dx} $$ is

WB JEE 2010
18

If $$I = \int\limits_0^1 {{{dx} \over {1 + {x^{\pi /2}}}}} $$, then

WB JEE 2010
19

The value of $$\int\limits_{ - 2}^2 {(x\cos x + \sin x + 1)dx} $$ is

WB JEE 2011
20

$$\int\limits_\pi ^{16\pi } {|\sin x|dx = } $$

WB JEE 2011
21

The value of $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{{{r^3}} \over {{r^4} + {n^4}}}} $$ is

WB JEE 2011
22

The value of $$\int\limits_0^\pi {{{\sin }^{50}}x{{\cos }^{49}}x\,dx} $$ is

WB JEE 2011
23

All values of a for which the inequality $$\frac{1}{\sqrt{a}} \int_\limits1^a\left(\frac{3}{2} \sqrt{x}+1-\frac{1}{\sqrt{x}}\right) \mathrm{d} x<4$$ is satisfied, lie in the interval

WB JEE 2024
24

For any integer $$\mathrm{n}, \int_\limits0^\pi \mathrm{e}^{\cos ^2 x} \cdot \cos ^3(2 n+1) x \mathrm{~d} x$$ has the value :

WB JEE 2024
25

If $$\mathrm{f}(x)=\frac{\mathrm{e}^x}{1+\mathrm{e}^x}, \mathrm{I}_1=\int_\limits{\mathrm{f}(-\mathrm{a})}^{\mathrm{f}(\mathrm{a})} x \mathrm{~g}(x(1-x)) \mathrm{d} x$$ and $$\mathrm{I}_2=\int_\limits{\mathrm{f}(-\mathrm{a})}^{\mathrm{f}(\mathrm{a})} \mathrm{g}(x(1-x)) \mathrm{d} x$$, then the value of $$\frac{I_2}{I_1}$$ is

WB JEE 2024
26

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function and $$f(1)=4$$. Then the value of $$\lim _\limits{x \rightarrow 1} \int_\limits4^{f(x)} \frac{2 t}{x-1} d t$$, if $$f^{\prime}(1)=2$$ is

WB JEE 2024
27

Let $$\mathrm{I}(\mathrm{R})=\int_\limits0^{\mathrm{R}} \mathrm{e}^{-\mathrm{R} \sin x} \mathrm{~d} x, \mathrm{R}>0$$. then,

WB JEE 2024
28

$$\lim _\limits{n \rightarrow \infty} \frac{1}{n^{k+1}}[2^k+4^k+6^k+\ldots .+(2 n)^k]=$$

WB JEE 2024
29

the expression $${{\int\limits_0^n {[x]dx} } \over {\int\limits_0^n {\{ x\} dx} }}$$, where $$[x]$$ and $$\{ x\} $$ are respectively integral and fractional part of $$x$$ and $$n \in N$$, is equal to

WB JEE 2023
30

The value $$\int\limits_0^{1/2} {{{dx} \over {\sqrt {1 - {x^{2n}}} }}} $$ is $$(n \in N)$$

WB JEE 2023
31

If $${I_n} = \int\limits_0^{{\pi \over 2}} {{{\cos }^n}x\cos nxdx} $$, then I$$_1$$, I$$_2$$, I$$_3$$ ... are in

WB JEE 2023
32

$$\int\limits_0^{2\pi } {\theta {{\sin }^6}\theta \cos \theta d\theta } $$ is equal to

WB JEE 2023
33

The average ordinate of $$y = \sin x$$ over $$[0,\pi ]$$ is :

WB JEE 2023
34

Let f be derivable in [0, 1], then

WB JEE 2022
35

The value of $$\int\limits_0^{{\pi \over 2}} {{{{{(\cos x)}^{\sin x}}} \over {{{(\cos x)}^{\sin x}} + {{(\sin x)}^{\cos x}}}}dx} $$ is

WB JEE 2022
36

Let $$\mathop {\lim }\limits_{ \in \to 0 + } \int\limits_ \in ^x {{{bt\cos 4t - a\sin 4t} \over {{t^2}}}dt = {{a\sin 4x} \over x} - 1,\left( {0 < x < {\pi \over 4}} \right)} $$. Then a and b are given by

WB JEE 2022
37

Let $$f(x) = \int\limits_{\sin x}^{\cos x} {{e^{ - {t^2}}}dt} $$. Then $$f'\left( {{\pi \over 4}} \right)$$ equals

WB JEE 2022
38

If I is the greatest of $${I_1} = \int\limits_0^1 {{e^{ - x}}{{\cos }^2}x\,dx} $$, $${I_2} = \int\limits_0^1 {{e^{ - {x^2}}}{{\cos }^2}x\,dx} $$, $${I_3} = \int\limits_0^1 {{e^{ - {x^2}}}dx} $$, $${I_4} = \int\limits_0^1 {{e^{ - {x^2}/2}}dx} $$, then

WB JEE 2022
39
$$\int\limits_1^3 {{{\left| {x - 1} \right|} \over {\left| {x - 2} \right| + \left| {x - 3} \right|}}dx} $$ is equal to
WB JEE 2021
40
The value of the integral $$\int\limits_{ - {1 \over 2}}^{{1 \over 2}} {{{\left\{ {{{\left( {{{x + 1} \over {x - 1}}} \right)}^2} + {{\left( {{{x - 1} \over {x + 1}}} \right)}^2} - 2} \right\}}^{1/2}}} dx$$ is equal to
WB JEE 2021
41
If $$\int\limits_{{{\log }_e}2}^x {{{({e^x} - 1)}^{ - 1}}dx = {{\log }_e}{3 \over 2}} $$, then the value of x is
WB JEE 2021
42
The value of $$\int\limits_0^5 {\max \{ {x^2},6x - 8\} \,dx} $$ is
WB JEE 2021
43
Let f(x) be continuous periodic function with period T. Let $$I = \int\limits_a^{a + T} {f(x)\,dx} $$. Then
WB JEE 2021
44
If $$b = \int\limits_0^1 {{{{e^t}} \over {t + 1}}dt} $$, then $$\int\limits_{a - 1}^a {{{{e^{ - t}}} \over {t - a - 1}}} $$ is
WB JEE 2021
45
Let $$I = \int_{\pi /4}^{\pi /3} {{{\sin x} \over x}dx} $$. Then
WB JEE 2021
46
The value of

$$\sum\limits_{n = 1}^{10} {} \int\limits_{ - 2n - 1}^{ - 2n} {{{\sin }^{27}}} x\,dx + \sum\limits_{n = 1}^{10} {} \int\limits_{2n}^{2n + 1} {{{\sin }^{27}}} x\,dx$$ is equal to
WB JEE 2020
47
$$\int\limits_0^2 {[{x^2}]} \,dx$$ is equal to
WB JEE 2020
48
Let f, be a continuous function in [0, 1], then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{j = 0}^n {{1 \over n}} f\left( {{j \over n}} \right)$$ is
WB JEE 2020
49
The value of the integration

$$\int\limits_{ - {\pi \over 4}}^{\pi /4} {\left( {\lambda |\sin x| + {{\mu \sin x} \over {1 + \cos x}} + \gamma } \right)} dx$$
WB JEE 2019
50
The value of $$\mathop {\lim }\limits_{x \to 0} {1 \over x}\left[ {\int\limits_y^a {{e^{{{\sin }^2}t}}dt - } \int\limits_{x + y}^a {{e^{{{\sin }^2}t}}dt} } \right]$$ is equal to
WB JEE 2019
51
The value of the integral $$\int\limits_{ - 1}^1 {\left\{ {{{{x^{2015}}} \over {{e^{|x|}}({x^2} + \cos x)}} + {1 \over {{e^{|x|}}}}} \right\}} dx$$ is equal to
WB JEE 2019
52
$$\mathop {\lim }\limits_{n \to \infty } {3 \over n}\left[ {1 + \sqrt {{n \over {n + 3}}} + \sqrt {{n \over {n + 6}}} + \sqrt {{n \over {n + 9}}} + ... + \sqrt {{n \over {n + 3(n - 1)}}} } \right]$$
WB JEE 2019
53
If $$M = \int\limits_0^{\pi /2} {{{\cos x} \over {x + 2}}dx} $$, $$N = \int\limits_0^{\pi /4} {{{\sin x\cos x} \over {{{(x + 1)}^2}}}dx} $$, then the value of M $$-$$ N is
WB JEE 2018
54
The value of the integral $$I = \int_{1/2014}^{2014} {{{{{\tan }^{ - 1}}x} \over x}} dx$$ is
WB JEE 2018
55
Let $$I = \int\limits_{\pi /4}^{\pi /3} {{{\sin x} \over x}} dx$$. Then
WB JEE 2018
56
The value of

$$I = \int_{\pi /2}^{5\pi /2} {{{{e^{{{\tan }^{ - 1}}(\sin x)}}} \over {{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}} dx$$, is
WB JEE 2018
57
The value of

$$\mathop {\lim }\limits_{n \to \infty } {1 \over n}\left\{ {{{\sec }^2}{\pi \over {4n}} + {{\sec }^2}{{2\pi } \over {4n}} + ... + {{\sec }^2}{{n\pi } \over {4n}}} \right\}$$ is
WB JEE 2018
58
Let $${I_1} = \int_0^n {[x]} \,dx$$ and $${I_2} = \int_0^n {\{ x\} } \,dx$$, where [x] and {x} are integral and fractional parts of x and n $$ \in $$ N $$-$$ {1}. Then I1 / I2 is equal to
WB JEE 2017
59
The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + ... + {1 \over {2n}}} \right]$$ is
WB JEE 2017
60
The value of the integral $$\int_0^1 {{e^{{x^2}}}} dx$$
WB JEE 2017
61
$$\int_0^{100} {{e^{x - [x]}}} dx$$ is equal to
WB JEE 2017
62
If $$f(x) = \int_{ - 1}^x {|t|} \,dt$$, then for any $$x \ge 0,\,f(x)$$ is equal to
WB JEE 2017
63
Let $$I = \int_0^{100\pi } {\sqrt {(1 - \cos 2x)} } \,dx$$, then
WB JEE 2017
64
$$\int\limits_0^1 {\log \left( {{1 \over x} - 1} \right)} dx$$ is equal to
WB JEE 2016
65
If [x] denotes the greatest integer less than or equal to x, then the value of the integral $$\int\limits_0^2 {{x^2}[x]\,dx} $$ equals
WB JEE 2016

Subjective

MCQ (More than One Correct Answer)

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12