WB JEE
Mathematics
Logarithms
Previous Years Questions

If $${\log _5}\,\,{\log _5}\,\,{\log _2}x = 0$$ then value of x is
The value of $$\left( {{1 \over {{{\log }_3}12}} + {1 \over {{{\log }_4}12}}} \right)$$ is
If x = logabc, y = logbca, z = logcab, then the value of $${1 \over {1 + x}} + {1 \over {1 + y}} + {1 \over {1 + z}}$$ will be...
The value of $${{{{\log }_3}5 \times {{\log }_{25}}27 \times {{\log }_{49}}7} \over {{{\log }_{81}}3}}$$ is
The sum of the series $${1 \over {1.2}} - {1 \over {2.3}} + {1 \over {3.4}} - \,\,.....\,\,\infty$$ is
If $${\log _3}x + {\log _3}y = 2 + {\log _3}2$$ and $${\log _3}(x + y) = 2$$, then
If $${\log _7}2 = \lambda$$, then the value of $${\log _{49}}(28)$$ is
The sequence log a, $$\log {{{a^2}} \over b}$$, $$\log {{{a^3}} \over {{b^2}}}$$, ...... is
If x satisfies the inequality $${\log _{25}}{x^2} + {({\log _5}x)^2} If 2 log(x + 1)$$ - $$log(x2$$ - $$1) = log 2, then x = If$$\log _2^6 + {1 \over {2x}} = {\log _2}\left( {{2^{{1 \over x}}} + 8} \right)$$, then the value of x are If$$x + {\log _{10}}(1 + {2^x}) = x{\log _{10}}5 + {\log _{10}}6$$, then the value of x is If$$({\log _5}x)({\log _x}3x)({\log _{3x}}y) = {\log _x}{x^3}$$, then y equals ## MCQ (More than One Correct Answer) The equation$${x^{{{(\log 3x)}^2}}} - {9 \over 2}\log 3\,x + 5 = 3\sqrt 3  has
EXAM MAP
Joint Entrance Examination